On Concept Lattices for Numberings

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Nikolay Bazhenov;Manat Mustafa;Anvar Nurakunov
{"title":"On Concept Lattices for Numberings","authors":"Nikolay Bazhenov;Manat Mustafa;Anvar Nurakunov","doi":"10.26599/TST.2023.9010102","DOIUrl":null,"url":null,"abstract":"The theory of numberings studies uniform computations for families of mathematical objects. In this area, computability-theoretic properties of at most countable families of sets \n<tex>$\\mathcal{S}$</tex>\n are typically classified via the corresponding Rogers upper semilattices. In most cases, a Rogers semilattice cannot be a lattice. Working within the framework of Formal Concept Analysis, we develop two new approaches to the classification of families \n<tex>$\\mathcal{S}$</tex>\n. Similarly to the classical theory of numberings, each of the approaches assigns to a family \n<tex>$\\mathcal{S}$</tex>\n its own concept lattice. The first approach captures the cardinality of a family \n<tex>$\\mathcal{S}$</tex>\n: if \n<tex>$\\mathcal{S}$</tex>\n contains more than 2 elements, then the corresponding concept lattice FC\n<inf>1</inf>\n(\n<tex>$\\mathcal{S}$</tex>\n) is a modular lattice of height 3, such that the number of its atoms to the cardinality of \n<tex>$\\mathcal{S}$</tex>\n. Our second approach gives a much richer environment. We prove that for any countable poset \n<tex>$P$</tex>\n, there exists a family \n<tex>$\\mathcal{S}$</tex>\n such that the induced concept lattice FC2 (\n<tex>$\\mathcal{S}$</tex>\n) is isomorphic to the Dedekind-MacNeille completion of \n<tex>$P$</tex>\n. We also establish connections with the class of enumerative lattices introduced by Hoyrup and Rojas in their studies of algorithmic randomness. We show that every lattice FC2 (\n<tex>$\\mathcal{S}$</tex>\n) is anti-isomorphic to an enumerative lattice. In addition, every enumerative lattice is anti-isomorphic to a sublattice of the lattice FC2 (\n<tex>$\\mathcal{S}$</tex>\n) for some family \n<tex>$\\mathcal{S}$</tex>\n.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"29 6","pages":"1642-1650"},"PeriodicalIF":6.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566025","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10566025/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

The theory of numberings studies uniform computations for families of mathematical objects. In this area, computability-theoretic properties of at most countable families of sets $\mathcal{S}$ are typically classified via the corresponding Rogers upper semilattices. In most cases, a Rogers semilattice cannot be a lattice. Working within the framework of Formal Concept Analysis, we develop two new approaches to the classification of families $\mathcal{S}$ . Similarly to the classical theory of numberings, each of the approaches assigns to a family $\mathcal{S}$ its own concept lattice. The first approach captures the cardinality of a family $\mathcal{S}$ : if $\mathcal{S}$ contains more than 2 elements, then the corresponding concept lattice FC 1 ( $\mathcal{S}$ ) is a modular lattice of height 3, such that the number of its atoms to the cardinality of $\mathcal{S}$ . Our second approach gives a much richer environment. We prove that for any countable poset $P$ , there exists a family $\mathcal{S}$ such that the induced concept lattice FC2 ( $\mathcal{S}$ ) is isomorphic to the Dedekind-MacNeille completion of $P$ . We also establish connections with the class of enumerative lattices introduced by Hoyrup and Rojas in their studies of algorithmic randomness. We show that every lattice FC2 ( $\mathcal{S}$ ) is anti-isomorphic to an enumerative lattice. In addition, every enumerative lattice is anti-isomorphic to a sublattice of the lattice FC2 ( $\mathcal{S}$ ) for some family $\mathcal{S}$ .
论编号的概念网格
数集理论研究数学对象族的统一计算。在这一领域,集合 $\mathcal{S}$ 的最可数族的可计算性理论性质通常是通过相应的罗杰斯上半格来分类的。在大多数情况下,罗杰斯半格不可能是格。在形式概念分析的框架内,我们开发了两种新方法来对$\mathcal{S}$族进行分类。与经典的编号理论类似,每一种方法都为$\mathcal{S}$族分配了自己的概念网格。第一种方法捕捉到了$\mathcal{S}$族的万有引力:如果$\mathcal{S}$包含2个以上的元素,那么相应的概念网格FC1($\mathcal{S}$)就是一个高度为3的模块网格,这样它的原子数就等于$\mathcal{S}$的万有引力。我们的第二种方法提供了更丰富的环境。我们证明,对于任何可数正集 $P$,都存在一个族 $/mathcal{S}$,使得诱导概念网格 FC2 ($mathcal{S}$) 与 $P$ 的戴德金-麦克尼尔补全同构。我们还建立了与霍伊鲁普和罗哈斯在算法随机性研究中引入的枚举网格类的联系。我们证明了每个网格 FC2 ($\mathcal{S}$) 都与枚举网格反同构。此外,对于某个族 $\mathcal{S}$,每个枚举网格都与网格 FC2 ($\mathcal{S}$) 的子网格反同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信