Approximation Algorithms for Maximization of $k$-Submodular Function Under a Matroid Constraint

IF 6.6 1区 计算机科学 Q1 Multidisciplinary
Yuezhu Liu;Yunjing Sun;Min Li
{"title":"Approximation Algorithms for Maximization of $k$-Submodular Function Under a Matroid Constraint","authors":"Yuezhu Liu;Yunjing Sun;Min Li","doi":"10.26599/TST.2023.9010122","DOIUrl":null,"url":null,"abstract":"In this paper, we design a deterministic 1/3-approximation algorithm for the problem of maximizing non-monotone \n<tex>$k$</tex>\n-submodular function under a matroid constraint. In order to reduce the complexity of this algorithm, we also present a randomized 1/3-approximation algorithm with the probability of \n<tex>$1-\\varepsilon$</tex>\n, where \n<tex>$\\varepsilon$</tex>\n is the probability of algorithm failure. Moreover, we design a streaming algorithm for both monotone and non-monotone objective \n<tex>$k$</tex>\n-submodular functions.","PeriodicalId":48690,"journal":{"name":"Tsinghua Science and Technology","volume":"29 6","pages":"1633-1641"},"PeriodicalIF":6.6000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566024","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tsinghua Science and Technology","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10566024/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we design a deterministic 1/3-approximation algorithm for the problem of maximizing non-monotone $k$ -submodular function under a matroid constraint. In order to reduce the complexity of this algorithm, we also present a randomized 1/3-approximation algorithm with the probability of $1-\varepsilon$ , where $\varepsilon$ is the probability of algorithm failure. Moreover, we design a streaming algorithm for both monotone and non-monotone objective $k$ -submodular functions.
矩阵约束条件下 $k$ 次模态函数最大化的近似算法
在本文中,我们针对在矩阵约束下最大化非单调 $k$ 次模态函数的问题设计了一种确定性 1/3 近似算法。为了降低该算法的复杂度,我们还提出了一种概率为 $1-\varepsilon$ 的随机 1/3 近似算法,其中 $\varepsilon$ 是算法失败的概率。此外,我们还为单调和非单调目标 $k$ 次模态函数设计了一种流算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tsinghua Science and Technology
Tsinghua Science and Technology COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
10.20
自引率
10.60%
发文量
2340
期刊介绍: Tsinghua Science and Technology (Tsinghua Sci Technol) started publication in 1996. It is an international academic journal sponsored by Tsinghua University and is published bimonthly. This journal aims at presenting the up-to-date scientific achievements in computer science, electronic engineering, and other IT fields. Contributions all over the world are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信