Learning Topological Operations on Meshes with Application to Block Decomposition of Polygons

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
A. Narayanan , Y. Pan , P.-O. Persson
{"title":"Learning Topological Operations on Meshes with Application to Block Decomposition of Polygons","authors":"A. Narayanan ,&nbsp;Y. Pan ,&nbsp;P.-O. Persson","doi":"10.1016/j.cad.2024.103744","DOIUrl":null,"url":null,"abstract":"<div><p>We present a learning based framework for mesh quality improvement on unstructured triangular and quadrilateral meshes. Our model learns to improve mesh quality according to a prescribed objective function purely via self-play reinforcement learning with no prior heuristics. The actions performed on the mesh are standard local and global element operations. The goal is to minimize the deviation of the node degrees from their ideal values, which in the case of interior vertices leads to a minimization of irregular nodes.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S001044852400071X/pdfft?md5=e8e3f2e334d413856691a3d4408592ca&pid=1-s2.0-S001044852400071X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001044852400071X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

We present a learning based framework for mesh quality improvement on unstructured triangular and quadrilateral meshes. Our model learns to improve mesh quality according to a prescribed objective function purely via self-play reinforcement learning with no prior heuristics. The actions performed on the mesh are standard local and global element operations. The goal is to minimize the deviation of the node degrees from their ideal values, which in the case of interior vertices leads to a minimization of irregular nodes.

学习网格上的拓扑操作并将其应用于多边形的块分解
我们提出了一个基于学习的框架,用于改善非结构化三角形和四边形网格的网格质量。我们的模型纯粹通过自我强化学习来提高网格质量,而无需事先采用启发式方法。对网格执行的操作是标准的局部和全局元素操作。目标是最小化节点度与理想值的偏差,在内部顶点的情况下,这将导致最小化不规则节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信