Natural Language Processing-Powered Real-Time Monitoring Solution for Vaccine Sentiments and Hesitancy on Social Media: System Development and Validation.
Liang-Chin Huang, Amanda L Eiden, Long He, Augustine Annan, Siwei Wang, Jingqi Wang, Frank J Manion, Xiaoyan Wang, Jingcheng Du, Lixia Yao
{"title":"Natural Language Processing-Powered Real-Time Monitoring Solution for Vaccine Sentiments and Hesitancy on Social Media: System Development and Validation.","authors":"Liang-Chin Huang, Amanda L Eiden, Long He, Augustine Annan, Siwei Wang, Jingqi Wang, Frank J Manion, Xiaoyan Wang, Jingcheng Du, Lixia Yao","doi":"10.2196/57164","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Vaccines serve as a crucial public health tool, although vaccine hesitancy continues to pose a significant threat to full vaccine uptake and, consequently, community health. Understanding and tracking vaccine hesitancy is essential for effective public health interventions; however, traditional survey methods present various limitations.</p><p><strong>Objective: </strong>This study aimed to create a real-time, natural language processing (NLP)-based tool to assess vaccine sentiment and hesitancy across 3 prominent social media platforms.</p><p><strong>Methods: </strong>We mined and curated discussions in English from Twitter (subsequently rebranded as X), Reddit, and YouTube social media platforms posted between January 1, 2011, and October 31, 2021, concerning human papillomavirus; measles, mumps, and rubella; and unspecified vaccines. We tested multiple NLP algorithms to classify vaccine sentiment into positive, neutral, or negative and to classify vaccine hesitancy using the World Health Organization's (WHO) 3Cs (confidence, complacency, and convenience) hesitancy model, conceptualizing an online dashboard to illustrate and contextualize trends.</p><p><strong>Results: </strong>We compiled over 86 million discussions. Our top-performing NLP models displayed accuracies ranging from 0.51 to 0.78 for sentiment classification and from 0.69 to 0.91 for hesitancy classification. Explorative analysis on our platform highlighted variations in online activity about vaccine sentiment and hesitancy, suggesting unique patterns for different vaccines.</p><p><strong>Conclusions: </strong>Our innovative system performs real-time analysis of sentiment and hesitancy on 3 vaccine topics across major social networks, providing crucial trend insights to assist campaigns aimed at enhancing vaccine uptake and public health.</p>","PeriodicalId":56334,"journal":{"name":"JMIR Medical Informatics","volume":"12 ","pages":"e57164"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11226933/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Medical Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/57164","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Vaccines serve as a crucial public health tool, although vaccine hesitancy continues to pose a significant threat to full vaccine uptake and, consequently, community health. Understanding and tracking vaccine hesitancy is essential for effective public health interventions; however, traditional survey methods present various limitations.
Objective: This study aimed to create a real-time, natural language processing (NLP)-based tool to assess vaccine sentiment and hesitancy across 3 prominent social media platforms.
Methods: We mined and curated discussions in English from Twitter (subsequently rebranded as X), Reddit, and YouTube social media platforms posted between January 1, 2011, and October 31, 2021, concerning human papillomavirus; measles, mumps, and rubella; and unspecified vaccines. We tested multiple NLP algorithms to classify vaccine sentiment into positive, neutral, or negative and to classify vaccine hesitancy using the World Health Organization's (WHO) 3Cs (confidence, complacency, and convenience) hesitancy model, conceptualizing an online dashboard to illustrate and contextualize trends.
Results: We compiled over 86 million discussions. Our top-performing NLP models displayed accuracies ranging from 0.51 to 0.78 for sentiment classification and from 0.69 to 0.91 for hesitancy classification. Explorative analysis on our platform highlighted variations in online activity about vaccine sentiment and hesitancy, suggesting unique patterns for different vaccines.
Conclusions: Our innovative system performs real-time analysis of sentiment and hesitancy on 3 vaccine topics across major social networks, providing crucial trend insights to assist campaigns aimed at enhancing vaccine uptake and public health.
期刊介绍:
JMIR Medical Informatics (JMI, ISSN 2291-9694) is a top-rated, tier A journal which focuses on clinical informatics, big data in health and health care, decision support for health professionals, electronic health records, ehealth infrastructures and implementation. It has a focus on applied, translational research, with a broad readership including clinicians, CIOs, engineers, industry and health informatics professionals.
Published by JMIR Publications, publisher of the Journal of Medical Internet Research (JMIR), the leading eHealth/mHealth journal (Impact Factor 2016: 5.175), JMIR Med Inform has a slightly different scope (emphasizing more on applications for clinicians and health professionals rather than consumers/citizens, which is the focus of JMIR), publishes even faster, and also allows papers which are more technical or more formative than what would be published in the Journal of Medical Internet Research.