{"title":"DMLS: an automated pipeline to extract the Drosophila modular transcription regulators and targets from massive literature articles.","authors":"Tzu-Hsien Yang, Yu-Huai Yu, Sheng-Hang Wu, Fang-Yuan Chang, Hsiu-Chun Tsai, Ya-Chiao Yang","doi":"10.1093/database/baae049","DOIUrl":null,"url":null,"abstract":"<p><p>Transcription regulation in multicellular species is mediated by modular transcription factor (TF) binding site combinations termed cis-regulatory modules (CRMs). Such CRM-mediated transcription regulation determines the gene expression patterns during development. Biologists frequently investigate CRM transcription regulation on gene expressions. However, the knowledge of the target genes and regulatory TFs participating in the CRMs under study is mostly fragmentary throughout the literature. Researchers need to afford tremendous human resources to fully surf through the articles deposited in biomedical literature databases in order to obtain the information. Although several novel text-mining systems are now available for literature triaging, these tools do not specifically focus on CRM-related literature prescreening, failing to correctly extract the information of the CRM target genes and regulatory TFs from the literature. For this reason, we constructed a supportive auto-literature prescreener called Drosophila Modular transcription-regulation Literature Screener (DMLS) that achieves the following: (i) prescreens articles describing experiments on modular transcription regulation, (ii) identifies the described target genes and TFs of the CRMs under study for each modular transcription-regulation-describing article and (iii) features an automated and extendable pipeline to perform the task. We demonstrated that the final performance of DMLS in extracting the described target gene and regulatory TF lists of CRMs under study for given articles achieved test macro area under the ROC curve (auROC) = 89.7% and area under the precision-recall curve (auPRC) = 77.6%, outperforming the intuitive gene name-occurrence-counting method by at least 19.9% in auROC and 30.5% in auPRC. The web service and the command line versions of DMLS are available at https://cobis.bme.ncku.edu.tw/DMLS/ and https://github.com/cobisLab/DMLS/, respectively. Database Tool URL: https://cobis.bme.ncku.edu.tw/DMLS/.</p>","PeriodicalId":10923,"journal":{"name":"Database: The Journal of Biological Databases and Curation","volume":"2024 ","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11188685/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Database: The Journal of Biological Databases and Curation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae049","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Transcription regulation in multicellular species is mediated by modular transcription factor (TF) binding site combinations termed cis-regulatory modules (CRMs). Such CRM-mediated transcription regulation determines the gene expression patterns during development. Biologists frequently investigate CRM transcription regulation on gene expressions. However, the knowledge of the target genes and regulatory TFs participating in the CRMs under study is mostly fragmentary throughout the literature. Researchers need to afford tremendous human resources to fully surf through the articles deposited in biomedical literature databases in order to obtain the information. Although several novel text-mining systems are now available for literature triaging, these tools do not specifically focus on CRM-related literature prescreening, failing to correctly extract the information of the CRM target genes and regulatory TFs from the literature. For this reason, we constructed a supportive auto-literature prescreener called Drosophila Modular transcription-regulation Literature Screener (DMLS) that achieves the following: (i) prescreens articles describing experiments on modular transcription regulation, (ii) identifies the described target genes and TFs of the CRMs under study for each modular transcription-regulation-describing article and (iii) features an automated and extendable pipeline to perform the task. We demonstrated that the final performance of DMLS in extracting the described target gene and regulatory TF lists of CRMs under study for given articles achieved test macro area under the ROC curve (auROC) = 89.7% and area under the precision-recall curve (auPRC) = 77.6%, outperforming the intuitive gene name-occurrence-counting method by at least 19.9% in auROC and 30.5% in auPRC. The web service and the command line versions of DMLS are available at https://cobis.bme.ncku.edu.tw/DMLS/ and https://github.com/cobisLab/DMLS/, respectively. Database Tool URL: https://cobis.bme.ncku.edu.tw/DMLS/.
期刊介绍:
Huge volumes of primary data are archived in numerous open-access databases, and with new generation technologies becoming more common in laboratories, large datasets will become even more prevalent. The archiving, curation, analysis and interpretation of all of these data are a challenge. Database development and biocuration are at the forefront of the endeavor to make sense of this mounting deluge of data.
Database: The Journal of Biological Databases and Curation provides an open access platform for the presentation of novel ideas in database research and biocuration, and aims to help strengthen the bridge between database developers, curators, and users.