Rudrani Maity, V M Raja Sankari, Snekhalatha U, Rajesh N A, Anela L Salvador
{"title":"Explainable AI based automated segmentation and multi-stage classification of gastroesophageal reflux using machine learning techniques.","authors":"Rudrani Maity, V M Raja Sankari, Snekhalatha U, Rajesh N A, Anela L Salvador","doi":"10.1088/2057-1976/ad5a14","DOIUrl":null,"url":null,"abstract":"<p><p>Presently, close to two million patients globally succumb to gastrointestinal reflux diseases (GERD). Video endoscopy represents cutting-edge technology in medical imaging, facilitating the diagnosis of various gastrointestinal ailments including stomach ulcers, bleeding, and polyps. However, the abundance of images produced by medical video endoscopy necessitates significant time for doctors to analyze them thoroughly, posing a challenge for manual diagnosis. This challenge has spurred research into computer-aided techniques aimed at diagnosing the plethora of generated images swiftly and accurately. The novelty of the proposed methodology lies in the development of a system tailored for the diagnosis of gastrointestinal diseases. The proposed work used an object detection method called Yolov5 for identifying abnormal region of interest and Deep LabV3+ for segmentation of abnormal regions in GERD. Further, the features are extracted from the segmented image and given as an input to the seven different machine learning classifiers and custom deep neural network model for multi-stage classification of GERD. The DeepLabV3+ attains an excellent segmentation accuracy of 95.2% and an F1 score of 93.3%. The custom dense neural network obtained a classification accuracy of 90.5%. Among the seven different machine learning classifiers, support vector machine (SVM) outperformed with classification accuracy of 87% compared to all other class outperformed combination of object detection, deep learning-based segmentation and machine learning classification enables the timely identification and surveillance of problems associated with GERD for healthcare providers.</p>","PeriodicalId":8896,"journal":{"name":"Biomedical Physics & Engineering Express","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Physics & Engineering Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2057-1976/ad5a14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Presently, close to two million patients globally succumb to gastrointestinal reflux diseases (GERD). Video endoscopy represents cutting-edge technology in medical imaging, facilitating the diagnosis of various gastrointestinal ailments including stomach ulcers, bleeding, and polyps. However, the abundance of images produced by medical video endoscopy necessitates significant time for doctors to analyze them thoroughly, posing a challenge for manual diagnosis. This challenge has spurred research into computer-aided techniques aimed at diagnosing the plethora of generated images swiftly and accurately. The novelty of the proposed methodology lies in the development of a system tailored for the diagnosis of gastrointestinal diseases. The proposed work used an object detection method called Yolov5 for identifying abnormal region of interest and Deep LabV3+ for segmentation of abnormal regions in GERD. Further, the features are extracted from the segmented image and given as an input to the seven different machine learning classifiers and custom deep neural network model for multi-stage classification of GERD. The DeepLabV3+ attains an excellent segmentation accuracy of 95.2% and an F1 score of 93.3%. The custom dense neural network obtained a classification accuracy of 90.5%. Among the seven different machine learning classifiers, support vector machine (SVM) outperformed with classification accuracy of 87% compared to all other class outperformed combination of object detection, deep learning-based segmentation and machine learning classification enables the timely identification and surveillance of problems associated with GERD for healthcare providers.
期刊介绍:
BPEX is an inclusive, international, multidisciplinary journal devoted to publishing new research on any application of physics and/or engineering in medicine and/or biology. Characterized by a broad geographical coverage and a fast-track peer-review process, relevant topics include all aspects of biophysics, medical physics and biomedical engineering. Papers that are almost entirely clinical or biological in their focus are not suitable. The journal has an emphasis on publishing interdisciplinary work and bringing research fields together, encompassing experimental, theoretical and computational work.