Joint SNR and Rician K-Factor Estimation Using Multimodal Network Over Mobile Fading Channels

Kosuke Tamura;Shun Kojima;Phuc V. Trinh;Shinya Sugiura;Chang-Jun Ahn
{"title":"Joint SNR and Rician K-Factor Estimation Using Multimodal Network Over Mobile Fading Channels","authors":"Kosuke Tamura;Shun Kojima;Phuc V. Trinh;Shinya Sugiura;Chang-Jun Ahn","doi":"10.1109/TMLCN.2024.3412054","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel joint signal-to-noise ratio (SNR) and Rician K-factor estimation scheme based on supervised multimodal learning. In the case of using machine learning to estimate the communication environment, achieving high accuracy requires a sufficient amount of training data. To solve this problem, we introduce a multimodal convolutional neural network (CNN) structure using different waveform formats. The proposed scheme obtains “feature diversity” by increasing the modalities from the same received signal, such as sequence data and spectrogram image. Especially with a limited dataset, training convergence is accelerated since different features can be extracted from each modality. Simulations demonstrate that the presented scheme achieves superior performance compared to conventional estimation methods.","PeriodicalId":100641,"journal":{"name":"IEEE Transactions on Machine Learning in Communications and Networking","volume":"2 ","pages":"766-779"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10552814","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Machine Learning in Communications and Networking","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10552814/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel joint signal-to-noise ratio (SNR) and Rician K-factor estimation scheme based on supervised multimodal learning. In the case of using machine learning to estimate the communication environment, achieving high accuracy requires a sufficient amount of training data. To solve this problem, we introduce a multimodal convolutional neural network (CNN) structure using different waveform formats. The proposed scheme obtains “feature diversity” by increasing the modalities from the same received signal, such as sequence data and spectrogram image. Especially with a limited dataset, training convergence is accelerated since different features can be extracted from each modality. Simulations demonstrate that the presented scheme achieves superior performance compared to conventional estimation methods.
利用移动衰减信道上的多模态网络进行联合 SNR 和 Rician K 因子估计
本文提出了一种基于有监督多模态学习的新型信噪比(SNR)和里克里亚 K 因子联合估计方案。在使用机器学习估计通信环境的情况下,要达到高精度需要足够多的训练数据。为了解决这个问题,我们引入了一种使用不同波形格式的多模态卷积神经网络(CNN)结构。所提出的方案通过增加同一接收信号的模式(如序列数据和频谱图图像)来获得 "特征多样性"。特别是在数据集有限的情况下,由于可以从每种模态中提取不同的特征,因此可以加快训练收敛速度。模拟结果表明,与传统的估计方法相比,所提出的方案性能更优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信