Magnetoelectric fractals, Magnetoelectric parametric resonance and Hopf bifurcation

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
M. Wanic , Z. Toklikishvili , S.K. Mishra , M. Trybus , L. Chotorlishvili
{"title":"Magnetoelectric fractals, Magnetoelectric parametric resonance and Hopf bifurcation","authors":"M. Wanic ,&nbsp;Z. Toklikishvili ,&nbsp;S.K. Mishra ,&nbsp;M. Trybus ,&nbsp;L. Chotorlishvili","doi":"10.1016/j.physd.2024.134257","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, we study the dynamics of the magnetic nanodisc coupled through a magnetoelectric coupling to a ferroelectric crystal. The model of our interest is nonlinear, and we explore the problem under different limits of weak and strong non-linearity. By applying two electric fields with different frequencies, we control the form of the confinement potential of a ferroelectric subsystem and realize different types of dynamics. We proved that the system is more sensitive to magnetoelectric coupling in the case of double-well potential. In particular, in the case of strong non-linearity, arbitrary small values of magnetoelectric coupling lead to chaotic dynamics. In essence, magnetoelectric coupling plays a role akin to the small perturbations destroying invariant tori according to the KAM theorem. We showed that bifurcations in the system are of Hopf’s type. We observed the formation of magnetoelectric fractals in the system. In the limit of weak non-linearity, we studied a problem of parametric nonlinear resonance and enhancement of magnetic oscillations through magnetoelectric coupling.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278924002082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present work, we study the dynamics of the magnetic nanodisc coupled through a magnetoelectric coupling to a ferroelectric crystal. The model of our interest is nonlinear, and we explore the problem under different limits of weak and strong non-linearity. By applying two electric fields with different frequencies, we control the form of the confinement potential of a ferroelectric subsystem and realize different types of dynamics. We proved that the system is more sensitive to magnetoelectric coupling in the case of double-well potential. In particular, in the case of strong non-linearity, arbitrary small values of magnetoelectric coupling lead to chaotic dynamics. In essence, magnetoelectric coupling plays a role akin to the small perturbations destroying invariant tori according to the KAM theorem. We showed that bifurcations in the system are of Hopf’s type. We observed the formation of magnetoelectric fractals in the system. In the limit of weak non-linearity, we studied a problem of parametric nonlinear resonance and enhancement of magnetic oscillations through magnetoelectric coupling.

磁电分形、磁电参数共振和霍普夫分岔
在本研究中,我们研究了通过磁电耦合与铁电晶体耦合的磁性纳米盘的动力学。我们感兴趣的模型是非线性的,我们在弱非线性和强非线性的不同极限下探索问题。通过施加两个不同频率的电场,我们控制了铁电子系统的约束势形式,并实现了不同类型的动力学。我们证明,在双阱势的情况下,系统对磁电耦合更为敏感。特别是在强非线性情况下,任意小的磁电耦合值都会导致混乱动力学。从本质上讲,磁电耦合的作用类似于根据 KAM 定理破坏不变环的小扰动。我们证明了系统中的分岔是霍普夫类型的。我们观察到系统中磁电分形的形成。在弱非线性极限下,我们研究了参数非线性共振和通过磁电耦合增强磁振荡的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信