Angular momentum transfer from swift electrons to non-spherical nanoparticles within the dipolar approximation

IF 2.1 3区 工程技术 Q2 MICROSCOPY
Jorge Luis Briseño-Gómez , Atzin López-Tercero , José Ángel Castellanos-Reyes , Alejandro Reyes-Coronado
{"title":"Angular momentum transfer from swift electrons to non-spherical nanoparticles within the dipolar approximation","authors":"Jorge Luis Briseño-Gómez ,&nbsp;Atzin López-Tercero ,&nbsp;José Ángel Castellanos-Reyes ,&nbsp;Alejandro Reyes-Coronado","doi":"10.1016/j.ultramic.2024.114005","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we study the angular momentum transfer from a single swift electron to non-spherical metallic nanoparticles, specifically investigating spheroidal and polyhedral (Platonic Solids) shapes. While previous research has predominantly focused on spherical nanoparticles, our work expands the knowledge by exploring various geometries. Employing classical electrodynamics and the small particle limit, we calculate the angular momentum transfer by integrating the spectral density, ensuring causality through Fourier-transform analysis. Our findings demonstrate that prolate spheroidal nanoparticles exhibit a single blueshifted plasmonic resonance, compared to spherical nanoparticles of equivalent volume, resulting in lower angular momentum transfer. Conversely, oblate nanoparticles display two resonances — one blueshifted and one redshifted — resulting in a higher angular momentum transfer than their spherical counterparts. Additionally, Platonic Solids with fewer faces exhibit significant redshifts in plasmonic resonances, leading to higher angular momentum transfer due to edge effects. We also observe resonances and angular momentum transfers with similar characteristics in specific pairs of Platonic Solids, known as duals. These results highlight promising applications, particularly in electron tweezers technology.</p></div>","PeriodicalId":23439,"journal":{"name":"Ultramicroscopy","volume":"264 ","pages":"Article 114005"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0304399124000846/pdfft?md5=7e92976a208ff09f81d90142535741c9&pid=1-s2.0-S0304399124000846-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultramicroscopy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304399124000846","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study the angular momentum transfer from a single swift electron to non-spherical metallic nanoparticles, specifically investigating spheroidal and polyhedral (Platonic Solids) shapes. While previous research has predominantly focused on spherical nanoparticles, our work expands the knowledge by exploring various geometries. Employing classical electrodynamics and the small particle limit, we calculate the angular momentum transfer by integrating the spectral density, ensuring causality through Fourier-transform analysis. Our findings demonstrate that prolate spheroidal nanoparticles exhibit a single blueshifted plasmonic resonance, compared to spherical nanoparticles of equivalent volume, resulting in lower angular momentum transfer. Conversely, oblate nanoparticles display two resonances — one blueshifted and one redshifted — resulting in a higher angular momentum transfer than their spherical counterparts. Additionally, Platonic Solids with fewer faces exhibit significant redshifts in plasmonic resonances, leading to higher angular momentum transfer due to edge effects. We also observe resonances and angular momentum transfers with similar characteristics in specific pairs of Platonic Solids, known as duals. These results highlight promising applications, particularly in electron tweezers technology.

在双极近似条件下从快速电子到非球形纳米粒子的角动量传递
在这项工作中,我们研究了从单个快速电子到非球形金属纳米粒子的角动量传递,特别是研究了球形和多面体(柏拉图实体)形状。以往的研究主要集中在球形纳米粒子上,而我们的研究则通过探索各种几何形状来扩展知识。利用经典电动力学和小粒子极限,我们通过积分谱密度计算角动量传递,并通过傅立叶变换分析确保因果关系。我们的研究结果表明,与同等体积的球形纳米粒子相比,长球形纳米粒子表现出单一的蓝移质子共振,从而导致较低的角动量传递。相反,扁球形纳米粒子显示出两个共振--一个蓝移,一个红移--导致角动量传递高于球形纳米粒子。此外,面数较少的柏拉图固体在质子共振中表现出明显的红移,从而在边缘效应的作用下产生更高的角动量传递。我们还在特定的柏拉图固体对(称为对偶)中观察到具有类似特征的共振和角动量传递。这些结果凸显了其广阔的应用前景,尤其是在电子镊子技术方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ultramicroscopy
Ultramicroscopy 工程技术-显微镜技术
CiteScore
4.60
自引率
13.60%
发文量
117
审稿时长
5.3 months
期刊介绍: Ultramicroscopy is an established journal that provides a forum for the publication of original research papers, invited reviews and rapid communications. The scope of Ultramicroscopy is to describe advances in instrumentation, methods and theory related to all modes of microscopical imaging, diffraction and spectroscopy in the life and physical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信