Filippo Sarvia, Samuele De Petris, Alessandro Farbo, Enrico Borgogno-Mondino
{"title":"Geometric vs spectral content of Remotely Piloted Aircraft Systems images in the Precision agriculture context","authors":"Filippo Sarvia, Samuele De Petris, Alessandro Farbo, Enrico Borgogno-Mondino","doi":"10.1016/j.ejrs.2024.06.003","DOIUrl":null,"url":null,"abstract":"<div><p>In the last years the agricultural sector has been evolving and new technologies, like Unmanned Aerial Vehicles (UAV) and satellites, were introduced to increase crop management efficiency, reducing environmental costs and improving farmers’ income. MAIA-S2 sensor is presently one of the most performing optical sensors operating on a Remotely Piloted Aircraft Systems (RPAS); given its spectral features, it aims at supporting a scaling process where monoscopic satellite data (namely Copernicus S2) with high temporal and limited geometric resolution can be integrated with stereoscopic data from RPAS having a very high spatial resolution. In this work, data from MAIA-S2 sensor were used to detect the effects of different fertilization types on corn with reference to a test field located in Carignano (Piemonte region, NW-Italy). Different amounts of top dressing fertilization were applied on corn and an RPAS acquisition operated on 14th June 2021 (corresponding date to the corn stem elongation stage) to explore if any effects could be detectable. Three spectral indices, namely Normalized Difference Vegetation Index, Normalized Difference Red Edge index and Canopy Height Model, computed from at-the-ground reflectance calibrated MAIA-S2 data, were compared to evaluate the correspondent response to the different fertilization rates. Results show that: (i) NDVI poorly detect N-related differences zones; (ii) NDRE and CHM reasonably reflect the different N fertilization doses; (iii) Only CHM proved to be able to detect crop height and, consequently, biomass differences that are known to be induced by different rates of fertilization.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"27 3","pages":"Pages 524-531"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000498/pdfft?md5=d6fcd092e52b40b7f169fa7af5edf8e2&pid=1-s2.0-S1110982324000498-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000498","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the last years the agricultural sector has been evolving and new technologies, like Unmanned Aerial Vehicles (UAV) and satellites, were introduced to increase crop management efficiency, reducing environmental costs and improving farmers’ income. MAIA-S2 sensor is presently one of the most performing optical sensors operating on a Remotely Piloted Aircraft Systems (RPAS); given its spectral features, it aims at supporting a scaling process where monoscopic satellite data (namely Copernicus S2) with high temporal and limited geometric resolution can be integrated with stereoscopic data from RPAS having a very high spatial resolution. In this work, data from MAIA-S2 sensor were used to detect the effects of different fertilization types on corn with reference to a test field located in Carignano (Piemonte region, NW-Italy). Different amounts of top dressing fertilization were applied on corn and an RPAS acquisition operated on 14th June 2021 (corresponding date to the corn stem elongation stage) to explore if any effects could be detectable. Three spectral indices, namely Normalized Difference Vegetation Index, Normalized Difference Red Edge index and Canopy Height Model, computed from at-the-ground reflectance calibrated MAIA-S2 data, were compared to evaluate the correspondent response to the different fertilization rates. Results show that: (i) NDVI poorly detect N-related differences zones; (ii) NDRE and CHM reasonably reflect the different N fertilization doses; (iii) Only CHM proved to be able to detect crop height and, consequently, biomass differences that are known to be induced by different rates of fertilization.
期刊介绍:
The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.