A discrete spectral method for time fractional fourth-order 2D diffusion-wave equation involving ψ-Caputo fractional derivative

IF 1.4 Q2 MATHEMATICS, APPLIED
M.H. Heydari , M. Razzaghi
{"title":"A discrete spectral method for time fractional fourth-order 2D diffusion-wave equation involving ψ-Caputo fractional derivative","authors":"M.H. Heydari ,&nbsp;M. Razzaghi","doi":"10.1016/j.rinam.2024.100466","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative, as a generalization of the classical Caputo fractional derivative in which the fractional derivative of a sufficiently differentiable function is defined with respect to another strictly increasing function, <span><math><mi>ψ</mi></math></span>, is utilized to define the time fractional fourth-order 2D diffusion-wave equation. A Chebyshev–Gauss–Lobatto scheme is developed to solve this equation. In this way, a new operational matrix for the <span><math><mi>ψ</mi></math></span>-Riemann–Liouville fractional integration of the Chebyshev polynomials is derived. The solution of the equation is obtained by determining the solution of the algebraic system extracted from approximation the <span><math><mi>ψ</mi></math></span>-Caputo fractional derivative term via a finite discrete Chebyshev series and employing the expressed operational matrix. The validity of the established approach is examined by solving two examples.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100466"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000360/pdfft?md5=930b6c888cf9b0352ad4d3a9e21fe946&pid=1-s2.0-S2590037424000360-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the ψ-Caputo fractional derivative, as a generalization of the classical Caputo fractional derivative in which the fractional derivative of a sufficiently differentiable function is defined with respect to another strictly increasing function, ψ, is utilized to define the time fractional fourth-order 2D diffusion-wave equation. A Chebyshev–Gauss–Lobatto scheme is developed to solve this equation. In this way, a new operational matrix for the ψ-Riemann–Liouville fractional integration of the Chebyshev polynomials is derived. The solution of the equation is obtained by determining the solution of the algebraic system extracted from approximation the ψ-Caputo fractional derivative term via a finite discrete Chebyshev series and employing the expressed operational matrix. The validity of the established approach is examined by solving two examples.

涉及ψ-卡普托分数导数的时间分数四阶二维扩散波方程的离散谱方法
ψ-卡普托分数导数是经典卡普托分数导数的广义化,其中充分可微函数的分数导数是相对于另一个严格递增函数ψ定义的,本研究利用ψ-卡普托分数导数定义时间分数四阶二维扩散波方程。为求解该方程,开发了一种切比雪夫-高斯-洛巴托方案。这样,就得出了切比雪夫多项式的 ψ-Riemann-Liouville 分数积分的新运算矩阵。通过有限离散切比雪夫级数,并利用所表达的运算矩阵,确定从近似ψ-卡普托分数导数项中提取的代数系统的解,从而获得方程的解。通过求解两个示例检验了所建立方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信