{"title":"Statistical theory for image classification using deep convolutional neural network with cross-entropy loss under the hierarchical max-pooling model","authors":"Michael Kohler , Sophie Langer","doi":"10.1016/j.jspi.2024.106188","DOIUrl":null,"url":null,"abstract":"<div><p>Convolutional neural networks (CNNs) trained with cross-entropy loss have proven to be extremely successful in classifying images. In recent years, much work has been done to also improve the theoretical understanding of neural networks. Nevertheless, it seems limited when these networks are trained with cross-entropy loss, mainly because of the unboundedness of the target function. In this paper, we aim to fill this gap by analysing the rate of the excess risk of a CNN classifier trained by cross-entropy loss. Under suitable assumptions on the smoothness and structure of the a posteriori probability, it is shown that these classifiers achieve a rate of convergence which is independent of the dimension of the image. These rates are in line with the practical observations about CNNs.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000454/pdfft?md5=68a8b5f0ef9e0563ac8f09f8ca152533&pid=1-s2.0-S0378375824000454-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Convolutional neural networks (CNNs) trained with cross-entropy loss have proven to be extremely successful in classifying images. In recent years, much work has been done to also improve the theoretical understanding of neural networks. Nevertheless, it seems limited when these networks are trained with cross-entropy loss, mainly because of the unboundedness of the target function. In this paper, we aim to fill this gap by analysing the rate of the excess risk of a CNN classifier trained by cross-entropy loss. Under suitable assumptions on the smoothness and structure of the a posteriori probability, it is shown that these classifiers achieve a rate of convergence which is independent of the dimension of the image. These rates are in line with the practical observations about CNNs.