Stratigraphic and paleoceanographic alternations within a Mediterranean semi-enclosed, syn-rift basin during Marine Isotope Stage 5: The Gulf of Corinth, Greece
Spyros Sergiou , Maria Geraga , Sofia Pechlivanidou , Robert L. Gawthorpe , Ulysses Ninnemann , Anna-Nele Meckler , Sevasti Modestou , Dimitra Angelopoulou , Dimitra Antoniou , Paula Diz , Lisa McNeill , Donna J. Shillington , George Papatheodorou
{"title":"Stratigraphic and paleoceanographic alternations within a Mediterranean semi-enclosed, syn-rift basin during Marine Isotope Stage 5: The Gulf of Corinth, Greece","authors":"Spyros Sergiou , Maria Geraga , Sofia Pechlivanidou , Robert L. Gawthorpe , Ulysses Ninnemann , Anna-Nele Meckler , Sevasti Modestou , Dimitra Angelopoulou , Dimitra Antoniou , Paula Diz , Lisa McNeill , Donna J. Shillington , George Papatheodorou","doi":"10.1016/j.margeo.2024.107340","DOIUrl":null,"url":null,"abstract":"<div><p>The Gulf of Corinth represents an ideal setting for studying the impact of sea level changes and regional climate on a semi-enclosed, <em>syn</em>-rift basin. Here we investigate the stratigraphic and paleoceanographic variability recorded in the sedimentary succession of the basin over the Marine Isotope Stage (MIS) 5 period when global sea level and climatic conditions along the eastern Mediterranean exhibited pronounced fluctuations. We used sedimentological (granulometry, composition), micropaleontological (planktic and benthic foraminifera), and isotopic (stable δ<sup>18</sup>O, δ<sup>13</sup>C, and clumped isotope) proxies on core samples from site M0079A (IODP Expedition 381) combined with additional data from the expedition overview and records from the surrounding area. The sedimentary succession comprises an alternating pattern of a) bioturbated, biogenic-rich deposits associated with increased hemipelagic sedimentation with b) partly bedded, detrital-rich sediments attributed to intercalated sediment gravity flows within the hemipelagic background under low oxic sea-surface conditions, and c) aragonite-rich laminated deposits, indicating either transitional conditions between marine and isolated environment or a highly stratified seawater column and low oxygen seafloor conditions. We find that the Gulf of Corinth lay under marine conditions for nearly the entire MIS 5 period, while the Rion sill would have been possibly shallower, even 10 m, than the current depth. Nevertheless, water exchange was restricted during the MIS 5a – MIS 4 transition when the sea level fluctuated very close to the sill height. The hydrological conditions within the Gulf during most of the highstands MIS 5a, 5c, and 5e reflect higher oxygen levels and/or increased nutrient availability compared to the Holocene and present-day regime. The combined effects of Ionian Sea inflows and enhanced riverine runoff led to increased water column stratification and low oxygen, eutrophic seafloor conditions in the Gulf of Corinth during times of high precipitation in southern Europe and deposition of sapropels S3, S4, and S5 throughout the eastern Mediterranean. In contrast, during periods of widespread cold and arid conditions in the eastern Mediterranean, water column mixing was intense within the Gulf. Prevalent marine conditions are also proposed during the MIS 5b and 5d lowstands, yet associated with predominately bedded-detrital sediments in the Gulf. A complementary investigation in the adjoining Patras Gulf is suggested to fully comprehend the dynamics of climate and sea level changes in complex rift systems.</p></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"474 ","pages":"Article 107340"},"PeriodicalIF":2.6000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724001245","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Gulf of Corinth represents an ideal setting for studying the impact of sea level changes and regional climate on a semi-enclosed, syn-rift basin. Here we investigate the stratigraphic and paleoceanographic variability recorded in the sedimentary succession of the basin over the Marine Isotope Stage (MIS) 5 period when global sea level and climatic conditions along the eastern Mediterranean exhibited pronounced fluctuations. We used sedimentological (granulometry, composition), micropaleontological (planktic and benthic foraminifera), and isotopic (stable δ18O, δ13C, and clumped isotope) proxies on core samples from site M0079A (IODP Expedition 381) combined with additional data from the expedition overview and records from the surrounding area. The sedimentary succession comprises an alternating pattern of a) bioturbated, biogenic-rich deposits associated with increased hemipelagic sedimentation with b) partly bedded, detrital-rich sediments attributed to intercalated sediment gravity flows within the hemipelagic background under low oxic sea-surface conditions, and c) aragonite-rich laminated deposits, indicating either transitional conditions between marine and isolated environment or a highly stratified seawater column and low oxygen seafloor conditions. We find that the Gulf of Corinth lay under marine conditions for nearly the entire MIS 5 period, while the Rion sill would have been possibly shallower, even 10 m, than the current depth. Nevertheless, water exchange was restricted during the MIS 5a – MIS 4 transition when the sea level fluctuated very close to the sill height. The hydrological conditions within the Gulf during most of the highstands MIS 5a, 5c, and 5e reflect higher oxygen levels and/or increased nutrient availability compared to the Holocene and present-day regime. The combined effects of Ionian Sea inflows and enhanced riverine runoff led to increased water column stratification and low oxygen, eutrophic seafloor conditions in the Gulf of Corinth during times of high precipitation in southern Europe and deposition of sapropels S3, S4, and S5 throughout the eastern Mediterranean. In contrast, during periods of widespread cold and arid conditions in the eastern Mediterranean, water column mixing was intense within the Gulf. Prevalent marine conditions are also proposed during the MIS 5b and 5d lowstands, yet associated with predominately bedded-detrital sediments in the Gulf. A complementary investigation in the adjoining Patras Gulf is suggested to fully comprehend the dynamics of climate and sea level changes in complex rift systems.
期刊介绍:
Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.