A Comparison of Methods to Identify the Mean Response Time of Ramp-Incremental Exercise for Exercise Prescription.

Nikan Behboodpour, Brayden Halvorson, Juan M Murias, Daniel Keir, Glen Belfry
{"title":"A Comparison of Methods to Identify the Mean Response Time of Ramp-Incremental Exercise for Exercise Prescription.","authors":"Nikan Behboodpour, Brayden Halvorson, Juan M Murias, Daniel Keir, Glen Belfry","doi":"10.1080/02701367.2024.2346137","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> The oxygen uptake (<math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub>) vs power output relationship from ramp incremental exercise is used to prescribe aerobic exercise. As power output increases, there is a delay in <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> that contributes to a misalignment of <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> from power output; the mean response time (MRT). If the MRT is not considered in exercise prescription, ramp incremental-identified power outputs will elicit <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> values that are higher than intended. We compared three methods of determining MRT (exponential modeling (MRT<sub>EXP</sub>), linear modeling (MRT<sub>LIN</sub>), and the steady-state method (MRT<sub>SS</sub>)) and evaluated their accuracy at predicting the <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> associated with power outputs approximating 75% and 85% of gas exchange threshold and 15% of the difference between gas exchange threshold and maximal <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> (Δ15). <b>Methods:</b> Ten males performed a 30-W∙min<sup>-1</sup> ramp incremental and three 30-min constant power output cycle ergometer trials with intensities at 75% gas exchange threshold, 85% gas exchange threshold, and ∆15. At each intensity, the measured steady-state <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> during each 30-min test was compared to the <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> predicted after adjustment by each of the three MRTs. <b>Results:</b> For all three MRT methods, predicted <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> was not different (<i>p</i> = 1.000) from the measured <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> at 75%GET (MRT<sub>EXP</sub>, 31 mL, MRT<sub>LIN</sub>, -35 mL, MRT<sub>SS</sub> 11 mL), 85%gas exchange threshold (MRT<sub>EXP</sub> -14 mL, MRT<sub>LIN</sub> -80 mL, MRT<sub>SS</sub> -32 mL). At Δ15, predicted <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub> based on MRT<sub>EXP</sub> was not different (<i>p</i> = .767) from the measured <math><mrow><mrow><mover><mrow><mi>V</mi></mrow><mo>˙</mo></mover></mrow></mrow></math>O<sub>2</sub>, but was different for MRT<sub>LIN</sub> (<i>p</i> < .001) and MRT<sub>SS</sub> (<i>p</i> = .03). <b>Conclusion:</b> Given that the intensity is below gas exchange threshold, all model predictions implemented from the current study matched the exercise prescription.</p>","PeriodicalId":94191,"journal":{"name":"Research quarterly for exercise and sport","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research quarterly for exercise and sport","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02701367.2024.2346137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: The oxygen uptake (V˙O2) vs power output relationship from ramp incremental exercise is used to prescribe aerobic exercise. As power output increases, there is a delay in V˙O2 that contributes to a misalignment of V˙O2 from power output; the mean response time (MRT). If the MRT is not considered in exercise prescription, ramp incremental-identified power outputs will elicit V˙O2 values that are higher than intended. We compared three methods of determining MRT (exponential modeling (MRTEXP), linear modeling (MRTLIN), and the steady-state method (MRTSS)) and evaluated their accuracy at predicting the V˙O2 associated with power outputs approximating 75% and 85% of gas exchange threshold and 15% of the difference between gas exchange threshold and maximal V˙O2 (Δ15). Methods: Ten males performed a 30-W∙min-1 ramp incremental and three 30-min constant power output cycle ergometer trials with intensities at 75% gas exchange threshold, 85% gas exchange threshold, and ∆15. At each intensity, the measured steady-state V˙O2 during each 30-min test was compared to the V˙O2 predicted after adjustment by each of the three MRTs. Results: For all three MRT methods, predicted V˙O2 was not different (p = 1.000) from the measured V˙O2 at 75%GET (MRTEXP, 31 mL, MRTLIN, -35 mL, MRTSS 11 mL), 85%gas exchange threshold (MRTEXP -14 mL, MRTLIN -80 mL, MRTSS -32 mL). At Δ15, predicted V˙O2 based on MRTEXP was not different (p = .767) from the measured V˙O2, but was different for MRTLIN (p < .001) and MRTSS (p = .03). Conclusion: Given that the intensity is below gas exchange threshold, all model predictions implemented from the current study matched the exercise prescription.

为运动处方确定斜坡递增运动平均响应时间的方法比较。
导言:斜坡递增运动的摄氧量(V˙O2)与输出功率的关系被用于有氧运动的处方。随着功率输出的增加,V˙O2 会出现延迟,导致 V˙O2与功率输出不一致,即平均反应时间(MRT)。如果在运动处方中不考虑 MRT,斜坡增量确定的功率输出将导致 V˙O2值高于预期值。我们比较了三种确定 MRT 的方法(指数建模法 (MRTEXP)、线性建模法 (MRTLIN) 和稳态法 (MRTSS)),并评估了它们在预测与接近气体交换阈值的 75% 和 85% 以及气体交换阈值与最大 V˙O2(Δ15)之差的 15% 的功率输出相关的 V˙O2时的准确性。方法:10 名男性进行了 30 W∙min-1 的斜坡递增试验和 3 次 30 分钟恒定功率输出循环测力计试验,强度分别为气体交换阈值的 75%、气体交换阈值的 85% 和 Δ15。在每种强度下,将每次 30 分钟测试期间测得的稳态 V˙O2与三种 MRT 调整后预测的 V˙O2进行比较。结果:对于所有三种 MRT 方法,在 75%GET (MRTEXP,31 mL,MRTLIN,-35 mL,MRTSS 11 mL)、85% 气体交换阈值(MRTEXP -14 mL,MRTLIN -80 mL,MRTSS -32 mL)时,预测 V˙O2与测量 V˙O2无差异(p = 1.000)。在 Δ15 时,根据 MRTEXP 预测的 V˙O2与测量的 V˙O2无差异(p = .767),但 MRTLIN 的预测 V˙O2与测量的 V˙O2有差异(p SS (p = .03))。结论:鉴于运动强度低于气体交换阈值,当前研究中的所有模型预测都与运动处方相匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信