{"title":"Air inflow into vacuum-type immobilization devices impacts setup errors.","authors":"Fumiyasu Matsubayashi, Tatsuya Kamima, Yasushi Ito, Yasuo Yoshioka","doi":"10.1007/s12194-024-00822-w","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to determine the impact of air inflow into vacuum-type immobilization devices (VIDs) on setup errors. We assigned 70 patients undergoing radiotherapy for head and neck cancer to groups V (n = 34) or N (n = 36) according to whether the VIDs were deflated weekly or not deflated during treatment, respectively. We calculated systematic errors (Σ) as the standard deviations (SDs) of mean errors, and random errors (σ) as the root mean square of SDs in each patient. We compared overall means (μ), SDs (SD<sub>overall</sub>), random errors and systematic errors. We also measured temporary pressure changes in VIDs to determine the influence of pressure changes in VIDs on setup errors. The μ was within 0.20 mm and 0.2° in both groups, whereas SD<sub>overall</sub> significantly differed between them. The SD<sub>overall</sub> differed the most in the Roll axes of groups N (0. 87°) and V (0.58°). The Σ and σ values were lower in all axes of group V than in group N. Despite the initial deflation target of - 70 kPa, the pressure in VIDs reached - 5 kPa at the end of treatment. However, weekly deflation apparently maintained pressure at - 20 kPa. Effective pressure control in VIDs can reduce patient-by-patient variation and improve setup reproducibility for individual patients, consequently resulting in small variations among overall setup errors.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":"697-702"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00822-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/19 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
We aimed to determine the impact of air inflow into vacuum-type immobilization devices (VIDs) on setup errors. We assigned 70 patients undergoing radiotherapy for head and neck cancer to groups V (n = 34) or N (n = 36) according to whether the VIDs were deflated weekly or not deflated during treatment, respectively. We calculated systematic errors (Σ) as the standard deviations (SDs) of mean errors, and random errors (σ) as the root mean square of SDs in each patient. We compared overall means (μ), SDs (SDoverall), random errors and systematic errors. We also measured temporary pressure changes in VIDs to determine the influence of pressure changes in VIDs on setup errors. The μ was within 0.20 mm and 0.2° in both groups, whereas SDoverall significantly differed between them. The SDoverall differed the most in the Roll axes of groups N (0. 87°) and V (0.58°). The Σ and σ values were lower in all axes of group V than in group N. Despite the initial deflation target of - 70 kPa, the pressure in VIDs reached - 5 kPa at the end of treatment. However, weekly deflation apparently maintained pressure at - 20 kPa. Effective pressure control in VIDs can reduce patient-by-patient variation and improve setup reproducibility for individual patients, consequently resulting in small variations among overall setup errors.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.