Identification of Semiochemical Candidates Involved in Glossina Palpalis Gambiensis Larviposition Site Selection and Behavioural Responses of Adult Gravid Females.
IF 2.2 3区 环境科学与生态学Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Geoffrey Gimonneau, Bruno Buatois, Benoit Lapeyre, Ernest Wendemanegde Salou, Nadege Sanon, Annick Ranaivoarisoa, Olivier Roux, Laurent Dormont
{"title":"Identification of Semiochemical Candidates Involved in Glossina Palpalis Gambiensis Larviposition Site Selection and Behavioural Responses of Adult Gravid Females.","authors":"Geoffrey Gimonneau, Bruno Buatois, Benoit Lapeyre, Ernest Wendemanegde Salou, Nadege Sanon, Annick Ranaivoarisoa, Olivier Roux, Laurent Dormont","doi":"10.1007/s10886-024-01524-8","DOIUrl":null,"url":null,"abstract":"<p><p>Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of human and animal trypanosomes. This viviparous insect develops and produces a single larva at 10-day intervals deposited in specific sites. In some species aggregation of larvae has been shown and seems to be mediated by both physical factors and volatile semiochemicals of larval origin. In this context, this study aims to identify chemicals emitted during the pupariation process in Glossina palpalis gambiensis. Volatile Organic Compounds (VOCs) emitted by larvae were identified using static headspace solid-phase microextraction and gas-chromatography mass-spectrometry (GC-MS) analysis. Electrophysiology and behavioural assays were performed on gravid females to confirm VOCs behavioural activity and attractiveness. GC-MS results revealed ten chemicals emitted during the pupariation process of G. p. gambiensis larvae. Among these chemicals, gravid females were shown to detect nine of them during coupled gas chromatography - electroantennographic detection tests. Behavioural assays highlighted two compounds were as attractive as pupae and one compound and a blend of four compounds were more attractive than pupae. Although the larval origin of some of them needs to be confirmed as they may also likely produced by micro-organisms, these compounds induced significant behavioural responses in the laboratory. Further experiments have to explore the biological activity and competitiveness of these compounds in the field. This work opens interesting opportunities for behavioural manipulation and control of tsetse flies.</p>","PeriodicalId":15346,"journal":{"name":"Journal of Chemical Ecology","volume":" ","pages":"439-452"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10886-024-01524-8","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/19 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of human and animal trypanosomes. This viviparous insect develops and produces a single larva at 10-day intervals deposited in specific sites. In some species aggregation of larvae has been shown and seems to be mediated by both physical factors and volatile semiochemicals of larval origin. In this context, this study aims to identify chemicals emitted during the pupariation process in Glossina palpalis gambiensis. Volatile Organic Compounds (VOCs) emitted by larvae were identified using static headspace solid-phase microextraction and gas-chromatography mass-spectrometry (GC-MS) analysis. Electrophysiology and behavioural assays were performed on gravid females to confirm VOCs behavioural activity and attractiveness. GC-MS results revealed ten chemicals emitted during the pupariation process of G. p. gambiensis larvae. Among these chemicals, gravid females were shown to detect nine of them during coupled gas chromatography - electroantennographic detection tests. Behavioural assays highlighted two compounds were as attractive as pupae and one compound and a blend of four compounds were more attractive than pupae. Although the larval origin of some of them needs to be confirmed as they may also likely produced by micro-organisms, these compounds induced significant behavioural responses in the laboratory. Further experiments have to explore the biological activity and competitiveness of these compounds in the field. This work opens interesting opportunities for behavioural manipulation and control of tsetse flies.
期刊介绍:
Journal of Chemical Ecology is devoted to promoting an ecological understanding of the origin, function, and significance of natural chemicals that mediate interactions within and between organisms. Such relationships, often adaptively important, comprise the oldest of communication systems in terrestrial and aquatic environments. With recent advances in methodology for elucidating structures of the chemical compounds involved, a strong interdisciplinary association has developed between chemists and biologists which should accelerate understanding of these interactions in nature.
Scientific contributions, including review articles, are welcome from either members or nonmembers of the International Society of Chemical Ecology. Manuscripts must be in English and may include original research in biological and/or chemical aspects of chemical ecology. They may include substantive observations of interactions in nature, the elucidation of the chemical compounds involved, the mechanisms of their production and reception, and the translation of such basic information into survey and control protocols. Sufficient biological and chemical detail should be given to substantiate conclusions and to permit results to be evaluated and reproduced.