Stereochemically-aware bioactivity descriptors for uncharacterized chemical compounds

IF 7.1 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Arnau Comajuncosa-Creus, Aksel Lenes, Miguel Sánchez-Palomino, Dylan Dalton, Patrick Aloy
{"title":"Stereochemically-aware bioactivity descriptors for uncharacterized chemical compounds","authors":"Arnau Comajuncosa-Creus,&nbsp;Aksel Lenes,&nbsp;Miguel Sánchez-Palomino,&nbsp;Dylan Dalton,&nbsp;Patrick Aloy","doi":"10.1186/s13321-024-00867-4","DOIUrl":null,"url":null,"abstract":"<div><p>Stereochemistry plays a fundamental role in pharmacology. Here, we systematically investigate the relationship between stereoisomerism and bioactivity on over 1 M compounds, finding that a very significant fraction (~ 40%) of spatial isomer pairs show, to some extent, distinct bioactivities. We then use the 3D representation of these molecules to train a collection of deep neural networks (<i>Signaturizers3D</i>) to generate bioactivity descriptors associated to small molecules, that capture their effects at increasing levels of biological complexity (i.e. from protein targets to clinical outcomes). Further, we assess the ability of the descriptors to distinguish between stereoisomers and to recapitulate their different target binding profiles. Overall, we show how these new stereochemically-aware descriptors provide an even more faithful description of complex small molecule bioactivity properties, capturing key differences in the activity of stereoisomers.</p><p><b>Scientific contribution</b></p><p>We systematically assess the relationship between stereoisomerism and bioactivity on a large scale, focusing on compound-target binding events, and use our findings to train novel deep learning models to generate stereochemically-aware bioactivity signatures for any compound of interest.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"16 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-024-00867-4","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-024-00867-4","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stereochemistry plays a fundamental role in pharmacology. Here, we systematically investigate the relationship between stereoisomerism and bioactivity on over 1 M compounds, finding that a very significant fraction (~ 40%) of spatial isomer pairs show, to some extent, distinct bioactivities. We then use the 3D representation of these molecules to train a collection of deep neural networks (Signaturizers3D) to generate bioactivity descriptors associated to small molecules, that capture their effects at increasing levels of biological complexity (i.e. from protein targets to clinical outcomes). Further, we assess the ability of the descriptors to distinguish between stereoisomers and to recapitulate their different target binding profiles. Overall, we show how these new stereochemically-aware descriptors provide an even more faithful description of complex small molecule bioactivity properties, capturing key differences in the activity of stereoisomers.

Scientific contribution

We systematically assess the relationship between stereoisomerism and bioactivity on a large scale, focusing on compound-target binding events, and use our findings to train novel deep learning models to generate stereochemically-aware bioactivity signatures for any compound of interest.

针对未定性化合物的立体化学感知生物活性描述符。
立体化学在药理学中起着基础性作用。在这里,我们系统地研究了超过 100 万个化合物的立体异构体与生物活性之间的关系,发现相当大一部分(约 40%)的空间异构体对在一定程度上显示出不同的生物活性。然后,我们利用这些分子的三维表征来训练一系列深度神经网络(Signaturizers3D),以生成与小分子相关的生物活性描述符,从而捕捉其在生物复杂性(即从蛋白质靶点到临床结果)不断提高的水平上的效应。此外,我们还评估了描述符区分立体异构体和再现其不同靶标结合特征的能力。总之,我们展示了这些新的立体化学感知描述符如何更忠实地描述复杂的小分子生物活性特性,捕捉立体异构体活性的关键差异。科学贡献我们系统地大规模评估了立体异构体与生物活性之间的关系,重点关注化合物与靶标的结合事件,并利用我们的研究成果训练新型深度学习模型,为任何感兴趣的化合物生成立体化学感知生物活性特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信