Development and validation of an artificial intelligence model for the classification of hip fractures using the AO-OTA framework.

IF 2.5 2区 医学 Q1 ORTHOPEDICS
Ehsan Akbarian, Mehrgan Mohammadi, Emilia Tiala, Oscar Ljungberg, Ali Sharif Razavian, Martin Magnéli, Max Gordon
{"title":"Development and validation of an artificial intelligence model for the classification of hip fractures using the AO-OTA framework.","authors":"Ehsan Akbarian, Mehrgan Mohammadi, Emilia Tiala, Oscar Ljungberg, Ali Sharif Razavian, Martin Magnéli, Max Gordon","doi":"10.2340/17453674.2024.40949","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and purpose: </strong>Artificial intelligence (AI) has the potential to aid in the accurate diagnosis of hip fractures and reduce the workload of clinicians. We primarily aimed to develop and validate a convolutional neural network (CNN) for the automated classification of hip fractures based on the 2018 AO-OTA classification system. The secondary aim was to incorporate the model's assessment of additional radiographic findings that often accompany such injuries.</p><p><strong>Methods: </strong>6,361 plain radiographs of the hip taken between 2002 and 2016 at Danderyd University Hospital were used to train the CNN. A separate set of 343 radiographs representing 324 unique patients was used to test the performance of the network. Performance was evaluated using area under the curve (AUC), sensitivity, specificity, and Youden's index.</p><p><strong>Results: </strong>The CNN demonstrated high performance in identifying and classifying hip fracture, with AUCs ranging from 0.76 to 0.99 for different fracture categories. The AUC for hip fractures ranged from 0.86 to 0.99, for distal femur fractures from 0.76 to 0.99, and for pelvic fractures from 0.91 to 0.94. For 29 of 39 fracture categories, the AUC was ≥ 0.95.</p><p><strong>Conclusion: </strong>We found that AI has the potential for accurate and automated classification of hip fractures based on the AO-OTA classification system. Further training and modification of the CNN may enable its use in clinical settings.</p>","PeriodicalId":6916,"journal":{"name":"Acta Orthopaedica","volume":"95 ","pages":"340-347"},"PeriodicalIF":2.5000,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184710/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Orthopaedica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2340/17453674.2024.40949","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background and purpose: Artificial intelligence (AI) has the potential to aid in the accurate diagnosis of hip fractures and reduce the workload of clinicians. We primarily aimed to develop and validate a convolutional neural network (CNN) for the automated classification of hip fractures based on the 2018 AO-OTA classification system. The secondary aim was to incorporate the model's assessment of additional radiographic findings that often accompany such injuries.

Methods: 6,361 plain radiographs of the hip taken between 2002 and 2016 at Danderyd University Hospital were used to train the CNN. A separate set of 343 radiographs representing 324 unique patients was used to test the performance of the network. Performance was evaluated using area under the curve (AUC), sensitivity, specificity, and Youden's index.

Results: The CNN demonstrated high performance in identifying and classifying hip fracture, with AUCs ranging from 0.76 to 0.99 for different fracture categories. The AUC for hip fractures ranged from 0.86 to 0.99, for distal femur fractures from 0.76 to 0.99, and for pelvic fractures from 0.91 to 0.94. For 29 of 39 fracture categories, the AUC was ≥ 0.95.

Conclusion: We found that AI has the potential for accurate and automated classification of hip fractures based on the AO-OTA classification system. Further training and modification of the CNN may enable its use in clinical settings.

利用 AO-OTA 框架开发和验证用于髋部骨折分类的人工智能模型。
背景和目的:人工智能(AI)有可能帮助准确诊断髋部骨折并减轻临床医生的工作量。我们的主要目的是开发并验证一种卷积神经网络(CNN),用于根据 2018 AO-OTA 分类系统对髋部骨折进行自动分类。次要目的是将模型对经常伴随此类损伤的其他放射学发现的评估纳入其中。方法:2002 年至 2016 年期间在丹德里德大学医院拍摄的 6361 张髋部平片被用于训练 CNN。另外还使用了代表 324 名患者的 343 张射线照片来测试网络的性能。使用曲线下面积(AUC)、灵敏度、特异性和尤登指数对性能进行评估:结果:CNN 在识别和分类髋部骨折方面表现出色,不同骨折类别的 AUC 值从 0.76 到 0.99 不等。髋部骨折的 AUC 从 0.86 到 0.99 不等,股骨远端骨折的 AUC 从 0.76 到 0.99 不等,骨盆骨折的 AUC 从 0.91 到 0.94 不等。在 39 个骨折类别中,29 个类别的 AUC ≥ 0.95:我们发现,人工智能具有根据 AO-OTA 分类系统对髋部骨折进行准确自动分类的潜力。对 CNN 的进一步训练和修改可能会使其在临床环境中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Orthopaedica
Acta Orthopaedica 医学-整形外科
CiteScore
6.40
自引率
8.10%
发文量
105
审稿时长
4-8 weeks
期刊介绍: Acta Orthopaedica (previously Acta Orthopaedica Scandinavica) presents original articles of basic research interest, as well as clinical studies in the field of orthopedics and related sub disciplines. Ever since the journal was founded in 1930, by a group of Scandinavian orthopedic surgeons, the journal has been published for an international audience. Acta Orthopaedica is owned by the Nordic Orthopaedic Federation and is the official publication of this federation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信