Naphthalene and phenanthrene affect differentially two glutathione S-transferases (GSTs) expression, GST activity, and glutathione content in white shrimp P. vannamei
Laura Camacho-Jiménez, Lilia Leyva-Carrillo, Silvia Gómez-Jiménez, Gloria Yepiz-Plascencia
{"title":"Naphthalene and phenanthrene affect differentially two glutathione S-transferases (GSTs) expression, GST activity, and glutathione content in white shrimp P. vannamei","authors":"Laura Camacho-Jiménez, Lilia Leyva-Carrillo, Silvia Gómez-Jiménez, Gloria Yepiz-Plascencia","doi":"10.1016/j.aquatox.2024.107005","DOIUrl":null,"url":null,"abstract":"<div><p>Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants ubiquitous in coastal ecosystems. The white shrimp <em>Penaeus vannamei</em> naturally inhabits in coastal areas and is cultivated in farms located nearby the oceans. PAHs can damage shrimp health, endanger natural populations, and lower shrimp aquaculture productivity. However, crustaceans have enzymes capable of metabolizing organic xenobiotics as PAHs and to neutralize reactive oxygen species (ROS) produced during xenobiotics metabolism. An important superfamily of xenobiotic-metabolizing and antioxidant enzymes are glutathione S-transferases (GSTs). In white shrimp, some GSTs are known, but they have been scarcely studied in response to PAHs. In this study we report the molecular cloning and bioinformatic characterization of two novel nucleotide sequences corresponding to cytosolic GSTs belonging the Delta and Theta classes (GSTD and GSTT). Both proteins genes have tissue-specific patterns of expression under normal conditions, that do not necessarily relate to GST activity and glutathione content. The expression of the GSTD and GSTT, GST activity and glutathione content was analyzed in juvenile <em>P. vannamei</em> exposed to two PAHs, naphthalene (NAP) and phenanthrene (PHE) in sub-lethal concentrations for 96 h. GSTD expression was up-regulated by the two PAHs, while GSTT expression was only induced by NAP. In contrast, GST activity towards CDNB was only up-regulated by PHE, suggesting differential effects of PAHs at gene and protein level. On the other hand, lower reduced glutathione content (GSH) caused by PAHs indicates its utilization for detoxification or antioxidant defenses. However, the GSH/GSSG did not change by PAHs treatment, indicating that shrimp can maintain redox balance during short-term sub-lethal exposure to NAP and PHE. Despite the variations in the responses to NAP and PHE, all these results suggest that the GSTD and GSTT genes could be useful biomarkers for PAH exposure in <em>P. vannamei</em>.</p></div>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24001759","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent organic pollutants ubiquitous in coastal ecosystems. The white shrimp Penaeus vannamei naturally inhabits in coastal areas and is cultivated in farms located nearby the oceans. PAHs can damage shrimp health, endanger natural populations, and lower shrimp aquaculture productivity. However, crustaceans have enzymes capable of metabolizing organic xenobiotics as PAHs and to neutralize reactive oxygen species (ROS) produced during xenobiotics metabolism. An important superfamily of xenobiotic-metabolizing and antioxidant enzymes are glutathione S-transferases (GSTs). In white shrimp, some GSTs are known, but they have been scarcely studied in response to PAHs. In this study we report the molecular cloning and bioinformatic characterization of two novel nucleotide sequences corresponding to cytosolic GSTs belonging the Delta and Theta classes (GSTD and GSTT). Both proteins genes have tissue-specific patterns of expression under normal conditions, that do not necessarily relate to GST activity and glutathione content. The expression of the GSTD and GSTT, GST activity and glutathione content was analyzed in juvenile P. vannamei exposed to two PAHs, naphthalene (NAP) and phenanthrene (PHE) in sub-lethal concentrations for 96 h. GSTD expression was up-regulated by the two PAHs, while GSTT expression was only induced by NAP. In contrast, GST activity towards CDNB was only up-regulated by PHE, suggesting differential effects of PAHs at gene and protein level. On the other hand, lower reduced glutathione content (GSH) caused by PAHs indicates its utilization for detoxification or antioxidant defenses. However, the GSH/GSSG did not change by PAHs treatment, indicating that shrimp can maintain redox balance during short-term sub-lethal exposure to NAP and PHE. Despite the variations in the responses to NAP and PHE, all these results suggest that the GSTD and GSTT genes could be useful biomarkers for PAH exposure in P. vannamei.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.