Ultrasensitive terahertz response mediated by split ring antenna induced giant resonant field enhancement

APL Photonics Pub Date : 2024-06-01 DOI:10.1063/5.0205333
Jinhua Zhang, M. Cai, Xingguo Zheng, Dangdang Li, Shuxiang Ma, Xuebao Li, Jingjing Fu, Yinghao Yuan, Lin Chen, Xuguang Guo, Yiming Zhu, Songlin Zhuang
{"title":"Ultrasensitive terahertz response mediated by split ring antenna induced giant resonant field enhancement","authors":"Jinhua Zhang, M. Cai, Xingguo Zheng, Dangdang Li, Shuxiang Ma, Xuebao Li, Jingjing Fu, Yinghao Yuan, Lin Chen, Xuguang Guo, Yiming Zhu, Songlin Zhuang","doi":"10.1063/5.0205333","DOIUrl":null,"url":null,"abstract":"Optical resonators are widely utilized to enhance light–matter interaction by focusing electromagnetic waves into deep sub-wavelength regions. Here, we first present a metallic bowtie split ring (BSR) optical resonator as an asymmetric light coupler for a terahertz (THz) graphene photothermoelectric (PTE) detector. The giant THz field enhancement in the slit region of BSR is mediated by two types of resonances: the inductor–capacitor (LC) and the dipole resonances, which greatly increase the THz absorption, resulting in the sensitivity improvement of the THz PTE detector. In detail, the LC and dipole resonant behaviors of BSR are systematically investigated in both theoretical and experimental aspects. Compared with the dipole resonance, the LC resonance leads to stronger electric field localization and enhancement. An optimized BSR is designed and integrated with a graphene THz PTE detector, and an ultrasensitive THz PTE response is demonstrated. At room temperature and in zero-bias mode, the key detection parameters—responsivity, sensitivity (noise-equivalent power), and speed—are 138 V/W, 25 pW/Hz1/2, and 3.7 µs, respectively. Our results indicate that the LC resonance supported by BSR can introduce strong local field enhancement, which is helpful for realizing high sensitivity THz detectors.","PeriodicalId":504565,"journal":{"name":"APL Photonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0205333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optical resonators are widely utilized to enhance light–matter interaction by focusing electromagnetic waves into deep sub-wavelength regions. Here, we first present a metallic bowtie split ring (BSR) optical resonator as an asymmetric light coupler for a terahertz (THz) graphene photothermoelectric (PTE) detector. The giant THz field enhancement in the slit region of BSR is mediated by two types of resonances: the inductor–capacitor (LC) and the dipole resonances, which greatly increase the THz absorption, resulting in the sensitivity improvement of the THz PTE detector. In detail, the LC and dipole resonant behaviors of BSR are systematically investigated in both theoretical and experimental aspects. Compared with the dipole resonance, the LC resonance leads to stronger electric field localization and enhancement. An optimized BSR is designed and integrated with a graphene THz PTE detector, and an ultrasensitive THz PTE response is demonstrated. At room temperature and in zero-bias mode, the key detection parameters—responsivity, sensitivity (noise-equivalent power), and speed—are 138 V/W, 25 pW/Hz1/2, and 3.7 µs, respectively. Our results indicate that the LC resonance supported by BSR can introduce strong local field enhancement, which is helpful for realizing high sensitivity THz detectors.
由分裂环形天线诱导的巨谐振场增强所介导的超灵敏太赫兹响应
通过将电磁波聚焦到深亚波长区域,光学谐振器被广泛用于增强光与物质的相互作用。在这里,我们首次提出了一种金属弓形分叉环(BSR)光学谐振器,作为太赫兹(THz)石墨烯光热电(PTE)探测器的非对称光耦合器。BSR 狭缝区域的巨大太赫兹场增强由两种共振介导:电感电容(LC)共振和偶极子共振,它们大大增加了太赫兹吸收,从而提高了太赫兹 PTE 探测器的灵敏度。本文从理论和实验两方面详细系统地研究了 BSR 的 LC 和偶极子共振行为。与偶极子共振相比,低电平共振会导致更强的电场定位和增强。设计了一种优化的 BSR,并将其与石墨烯太赫兹 PTE 探测器集成,演示了超灵敏的太赫兹 PTE 响应。在室温和零偏置模式下,关键检测参数--响应率、灵敏度(噪声等效功率)和速度--分别为 138 V/W、25 pW/Hz1/2 和 3.7 µs。我们的研究结果表明,BSR 支持的 LC 谐振可以引入强大的局部场增强,这有助于实现高灵敏度太赫兹探测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信