Efficient Logging-While-Drilling Image Logs Interpretation Using Deep Learning

Attilio Molossi, G. Roncoroni, M. Pipan
{"title":"Efficient Logging-While-Drilling Image Logs Interpretation Using Deep Learning","authors":"Attilio Molossi, G. Roncoroni, M. Pipan","doi":"10.30632/pjv65n3-2024a5","DOIUrl":null,"url":null,"abstract":"Logging-while-drilling (LWD) borehole images are very important data to support formation characterization and drilling operations. The manual interpretation of this data is a time-consuming task, limited by inconsistencies and uncertainties. We propose a deep-learning (DL)-based supervised method to automatically correlate geological features in low-resolution LWD image logs. Additionally, we tested two learning strategies, namely standard learning (SL) and curriculum learning (CL), to critically analyze the differences in the application on both synthetic and field data. Our results show that these DL models can effectively replace manual labor in dip picking but highlight the need for human intervention to validate and classify the correlated features, proving the utility of the semi-automatic paradigm.","PeriodicalId":170688,"journal":{"name":"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description","volume":"23 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petrophysics – The SPWLA Journal of Formation Evaluation and Reservoir Description","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30632/pjv65n3-2024a5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Logging-while-drilling (LWD) borehole images are very important data to support formation characterization and drilling operations. The manual interpretation of this data is a time-consuming task, limited by inconsistencies and uncertainties. We propose a deep-learning (DL)-based supervised method to automatically correlate geological features in low-resolution LWD image logs. Additionally, we tested two learning strategies, namely standard learning (SL) and curriculum learning (CL), to critically analyze the differences in the application on both synthetic and field data. Our results show that these DL models can effectively replace manual labor in dip picking but highlight the need for human intervention to validate and classify the correlated features, proving the utility of the semi-automatic paradigm.
利用深度学习进行高效的边钻井边测井图像测井解释
边钻边测井(LWD)井眼图像是支持地层特征描述和钻井作业的非常重要的数据。对这些数据进行人工解释是一项耗时的任务,而且会受到不一致性和不确定性的限制。我们提出了一种基于深度学习(DL)的监督方法,用于自动关联低分辨率 LWD 图像记录中的地质特征。此外,我们还测试了两种学习策略,即标准学习(SL)和课程学习(CL),以批判性地分析在合成数据和现场数据应用中的差异。我们的结果表明,这些 DL 模型可以有效地替代人工进行浸采,但也强调了人工干预对相关特征进行验证和分类的必要性,从而证明了半自动模式的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信