A Bayesian Interrupted Time Series framework for evaluating policy change on mental well-being: An application to England’s welfare reform

IF 2.1 Q3 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Connor Gascoigne , Annie Jeffery , Zejing Shao , Sara Geneletti , James B. Kirkbride , Gianluca Baio , Marta Blangiardo
{"title":"A Bayesian Interrupted Time Series framework for evaluating policy change on mental well-being: An application to England’s welfare reform","authors":"Connor Gascoigne ,&nbsp;Annie Jeffery ,&nbsp;Zejing Shao ,&nbsp;Sara Geneletti ,&nbsp;James B. Kirkbride ,&nbsp;Gianluca Baio ,&nbsp;Marta Blangiardo","doi":"10.1016/j.sste.2024.100662","DOIUrl":null,"url":null,"abstract":"<div><p>Factors contributing to social inequalities are associated with negative mental health outcomes and disparities in mental well-being. We propose a Bayesian hierarchical controlled interrupted time series to evaluate the impact of policies on population well-being whilst accounting for spatial and temporal patterns. Using data from the UKs Household Longitudinal Study, we apply this framework to evaluate the impact of the UKs welfare reform implemented in the 2010s on the mental health of the participants, measured using the GHQ-12 index. Our findings indicate that the reform led to a 2.36% (95% CrI: 0.57%–4.37%) increase in the national GHQ-12 index in the exposed group, after adjustment for the control group. Moreover, the geographical areas that experienced the largest increase in the GHQ-12 index are from more disadvantage backgrounds than affluent backgrounds.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"50 ","pages":"Article 100662"},"PeriodicalIF":2.1000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877584524000297/pdfft?md5=b7f341be6b17bce90e7ae5dd046958c3&pid=1-s2.0-S1877584524000297-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Factors contributing to social inequalities are associated with negative mental health outcomes and disparities in mental well-being. We propose a Bayesian hierarchical controlled interrupted time series to evaluate the impact of policies on population well-being whilst accounting for spatial and temporal patterns. Using data from the UKs Household Longitudinal Study, we apply this framework to evaluate the impact of the UKs welfare reform implemented in the 2010s on the mental health of the participants, measured using the GHQ-12 index. Our findings indicate that the reform led to a 2.36% (95% CrI: 0.57%–4.37%) increase in the national GHQ-12 index in the exposed group, after adjustment for the control group. Moreover, the geographical areas that experienced the largest increase in the GHQ-12 index are from more disadvantage backgrounds than affluent backgrounds.

评估心理健康政策变化的贝叶斯中断时间序列框架:应用于英格兰的福利改革
造成社会不平等的因素与消极的心理健康结果和心理健康差距有关。我们提出了一种贝叶斯分层控制中断时间序列来评估政策对人口福祉的影响,同时考虑空间和时间模式。利用英国家庭纵向研究的数据,我们运用这一框架评估了英国在 2010 年代实施的福利改革对参与者心理健康的影响,并使用 GHQ-12 指数进行测量。我们的研究结果表明,在对对照组进行调整后,改革导致暴露组的全国 GHQ-12 指数上升了 2.36%(95% 置信度:0.57%-4.37%)。此外,GHQ-12 指数上升幅度最大的地理区域的贫困背景多于富裕背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Spatial and Spatio-Temporal Epidemiology
Spatial and Spatio-Temporal Epidemiology PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH-
CiteScore
5.10
自引率
8.80%
发文量
63
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信