Detect the Activity of Benign and Malignant Breast Cancer

Ayu Fitriyani, Muhamad Fatchan, Wahyu Hadikristanto, Universitas Pelita Bangsa
{"title":"Detect the Activity of Benign and Malignant Breast Cancer","authors":"Ayu Fitriyani, Muhamad Fatchan, Wahyu Hadikristanto, Universitas Pelita Bangsa","doi":"10.59890/ijist.v2i5.1870","DOIUrl":null,"url":null,"abstract":"Breast cancer detection is an important stage for early cancer diagnosis. In this study, a Convolutional Neural Network (CNN) algorithm is used to detect breast cancer. The dataset used consists of MRI scan images of benign and malignant breast cancer, which are processed through breast image cropping and data augmentation. The model was trained using CNN architecture with transfer learning method of VGG-16 model. The results of the model training showed good performance with an accuracy of 62%. These findings show the potential of using CNN and transfer learning in improving early detection of breast cancer.","PeriodicalId":503863,"journal":{"name":"International Journal of Integrated Science and Technology","volume":"115 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59890/ijist.v2i5.1870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Breast cancer detection is an important stage for early cancer diagnosis. In this study, a Convolutional Neural Network (CNN) algorithm is used to detect breast cancer. The dataset used consists of MRI scan images of benign and malignant breast cancer, which are processed through breast image cropping and data augmentation. The model was trained using CNN architecture with transfer learning method of VGG-16 model. The results of the model training showed good performance with an accuracy of 62%. These findings show the potential of using CNN and transfer learning in improving early detection of breast cancer.
检测良性和恶性乳腺癌的活动性
乳腺癌检测是癌症早期诊断的重要阶段。本研究采用卷积神经网络(CNN)算法检测乳腺癌。使用的数据集包括良性和恶性乳腺癌的核磁共振扫描图像,这些图像经过乳房图像裁剪和数据增强处理。模型采用 CNN 架构和 VGG-16 模型的迁移学习方法进行训练。模型训练结果表明性能良好,准确率达到 62%。这些研究结果表明了使用 CNN 和迁移学习改进乳腺癌早期检测的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信