Zhongyun Tian , Wenke Zheng , Jiwei Guo , Yaolong Wang , Lei Wang , Jie Chen , Yiqiang Jiang
{"title":"Experimental analysis on the flow patterns and conversion mechanisms of condensing flow with non-azeotropic mixtures in spiral tube","authors":"Zhongyun Tian , Wenke Zheng , Jiwei Guo , Yaolong Wang , Lei Wang , Jie Chen , Yiqiang Jiang","doi":"10.1016/j.expthermflusci.2024.111245","DOIUrl":null,"url":null,"abstract":"<div><p>The flow patterns have a significant impact on the flow and heat transfer characteristics of the working fluid, making it fundamental for the study of complex two-phase flows. To investigate the condensation flow pattern and flow pattern transformation mechanism with mixed hydrocarbon in a spiral tube, a two-phase flow pattern experimental system was designed. The effects of mass flux (196–540 kg/m<sup>−2</sup>·s<sup>−1</sup>), vapor quality (0–1), and operating pressure (2–4 MPa) on flow patterns of methane/ethane/propane/isobutane mixed fluid in spiral tubes were analyzed. The results showed that with the increase in vapor quality, flow patterns such as bubbly flow, intermittent flow, wavy-stratified flow, and annular flow were observed in sequence. Additionally, through a comparative analysis of the experimental observations with existing flow pattern maps, a new flow pattern map tailored for the condensation two-phase flow of mixed hydrocarbon working fluids has been established. Based on the influence of inertial force, surface tension, gravity, shear force and other forces, Martinelli number, Soliman <em>We</em> and Soliman <em>Fr</em> are selected for the development of flow pattern conversion criteria. The new flow pattern map accurately predicts the majority of flow patterns.</p></div>","PeriodicalId":12294,"journal":{"name":"Experimental Thermal and Fluid Science","volume":"158 ","pages":"Article 111245"},"PeriodicalIF":2.8000,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Thermal and Fluid Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0894177724001146","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The flow patterns have a significant impact on the flow and heat transfer characteristics of the working fluid, making it fundamental for the study of complex two-phase flows. To investigate the condensation flow pattern and flow pattern transformation mechanism with mixed hydrocarbon in a spiral tube, a two-phase flow pattern experimental system was designed. The effects of mass flux (196–540 kg/m−2·s−1), vapor quality (0–1), and operating pressure (2–4 MPa) on flow patterns of methane/ethane/propane/isobutane mixed fluid in spiral tubes were analyzed. The results showed that with the increase in vapor quality, flow patterns such as bubbly flow, intermittent flow, wavy-stratified flow, and annular flow were observed in sequence. Additionally, through a comparative analysis of the experimental observations with existing flow pattern maps, a new flow pattern map tailored for the condensation two-phase flow of mixed hydrocarbon working fluids has been established. Based on the influence of inertial force, surface tension, gravity, shear force and other forces, Martinelli number, Soliman We and Soliman Fr are selected for the development of flow pattern conversion criteria. The new flow pattern map accurately predicts the majority of flow patterns.
期刊介绍:
Experimental Thermal and Fluid Science provides a forum for research emphasizing experimental work that enhances fundamental understanding of heat transfer, thermodynamics, and fluid mechanics. In addition to the principal areas of research, the journal covers research results in related fields, including combined heat and mass transfer, flows with phase transition, micro- and nano-scale systems, multiphase flow, combustion, radiative transfer, porous media, cryogenics, turbulence, and novel experimental techniques.