Real-time Prediction of Parametric Roll Motion via Power-activation Feed-forward Neural Network with Model Experiment Data

Xin Li, Ning Ma, QiQi Shi, X. Gu
{"title":"Real-time Prediction of Parametric Roll Motion via Power-activation Feed-forward Neural Network with Model Experiment Data","authors":"Xin Li, Ning Ma, QiQi Shi, X. Gu","doi":"10.17736/ijope.2023.mt35","DOIUrl":null,"url":null,"abstract":"The Power-activation Feed-forward Neural Network (PFN) is used to achieve real-time prediction of the ship’s parametric roll motion. The theoretical rationality of real-time prediction based on the ship’s rolling motion time series data is verified. Sequence-to-Sequence models are proposed and used to compare the PFN model, Long Short-Term Memory model, and Convolutional Neural Network. Three different groups of model experiment data are used for comparison. Results show that PFN has advantages in real-time prediction of parametric roll motion due to its time-varying weight adjustment methods, with a more effective mapping mode, higher accuracy, and shorter computing time.","PeriodicalId":503139,"journal":{"name":"International Journal of Offshore and Polar Engineering","volume":"62 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Offshore and Polar Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17736/ijope.2023.mt35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Power-activation Feed-forward Neural Network (PFN) is used to achieve real-time prediction of the ship’s parametric roll motion. The theoretical rationality of real-time prediction based on the ship’s rolling motion time series data is verified. Sequence-to-Sequence models are proposed and used to compare the PFN model, Long Short-Term Memory model, and Convolutional Neural Network. Three different groups of model experiment data are used for comparison. Results show that PFN has advantages in real-time prediction of parametric roll motion due to its time-varying weight adjustment methods, with a more effective mapping mode, higher accuracy, and shorter computing time.
利用模型试验数据,通过功率激活前馈神经网络对参数滚动运动进行实时预测
利用功率激活前馈神经网络(PFN)实现了对船舶参数滚动运动的实时预测。验证了基于船舶滚动运动时间序列数据的实时预测的理论合理性。提出了序列到序列模型,并用于比较 PFN 模型、长短期记忆模型和卷积神经网络。比较使用了三组不同的模型实验数据。结果表明,PFN 因其时变权重调整方法而在参数滚动运动的实时预测方面具有优势,其映射模式更有效、精度更高、计算时间更短。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信