{"title":"Mesoscale and climate environmental variability drive krill community changes in the Humboldt Current System","authors":"Macarena Díaz-Astudillo , Ramiro Riquelme-Bugueño , Gonzalo S. Saldías , Jaime Letelier","doi":"10.1016/j.jmarsys.2024.103998","DOIUrl":null,"url":null,"abstract":"<div><p>Euphausiids (or “krill”) play a crucial role in the food webs of eastern boundary upwelling systems. Their inter-specific predatory interactions with ecologically and commercially important species highlights the importance of understanding krill variability at different temporal and spatial scales. In the Humboldt Current System (HCS), few studies have addressed the spatio-temporal variability of krill communities and their link with climate and local environmental drivers. We studied the patterns and variability of euphausiid diversity in the coastal area off northern Chile, using zooplankton and CTD-O data, and satellite environmental data from the falls and springs of 2010–2017. The community showed low diversity and evenness, with the endemic species <em>Euphausia mucronata</em> being the most abundant. The environmental variance showed 2 main modes of variability: (1) upwelling-associated changes in the depth of the oxygen minimum zone (OMZ) and in temperature, and (2) interannual variability in salinity, associated with ENSO-driven water-mass changes. The diversity indices and community structure showed large fluctuations in the cross-shore direction, and with latitude. The general pattern showed higher diversity offshore and southward, with few species in the low temperature, shallow OMZ conditions of the coastal band. During the 2013 and 2016 marine heatwaves and the 2015-2016 El Niño, the Subtropical Water Mass was advected southward, causing an increase in salinity and temperature, and a decrease in total krill abundance. However, ENSO variability did not significantly affect the species composition. The changes in community structure were caused by fluctuations in species abundance rather than species presence, as the most abundant species dominated the community throughout the study period. These results indicate that the krill communities of the HCS are highly resilient to climate perturbations, with upwelling-associated gradients being the primary source of variability for euphausiid populations in this ecosystem.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924796324000368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Euphausiids (or “krill”) play a crucial role in the food webs of eastern boundary upwelling systems. Their inter-specific predatory interactions with ecologically and commercially important species highlights the importance of understanding krill variability at different temporal and spatial scales. In the Humboldt Current System (HCS), few studies have addressed the spatio-temporal variability of krill communities and their link with climate and local environmental drivers. We studied the patterns and variability of euphausiid diversity in the coastal area off northern Chile, using zooplankton and CTD-O data, and satellite environmental data from the falls and springs of 2010–2017. The community showed low diversity and evenness, with the endemic species Euphausia mucronata being the most abundant. The environmental variance showed 2 main modes of variability: (1) upwelling-associated changes in the depth of the oxygen minimum zone (OMZ) and in temperature, and (2) interannual variability in salinity, associated with ENSO-driven water-mass changes. The diversity indices and community structure showed large fluctuations in the cross-shore direction, and with latitude. The general pattern showed higher diversity offshore and southward, with few species in the low temperature, shallow OMZ conditions of the coastal band. During the 2013 and 2016 marine heatwaves and the 2015-2016 El Niño, the Subtropical Water Mass was advected southward, causing an increase in salinity and temperature, and a decrease in total krill abundance. However, ENSO variability did not significantly affect the species composition. The changes in community structure were caused by fluctuations in species abundance rather than species presence, as the most abundant species dominated the community throughout the study period. These results indicate that the krill communities of the HCS are highly resilient to climate perturbations, with upwelling-associated gradients being the primary source of variability for euphausiid populations in this ecosystem.