{"title":"From GTC to : Generating reset proof systems from cyclic proof systems","authors":"Graham E. Leigh, Dominik Wehr","doi":"10.1016/j.apal.2024.103485","DOIUrl":null,"url":null,"abstract":"<div><p>We consider cyclic proof systems in which derivations are graphs rather than trees. Such systems typically come with a condition that isolates which derivations are admitted as proofs, known as the <em>soundness condition</em>. This soundness condition frequently takes the form of either a <em>global trace</em> condition, a property dependent on all infinite paths in the proof-graph, or a <em>reset</em> condition, a ‘local’ condition depending on the simple cycles only which, as a result, is typically stable under more proof transformations.</p><p>In this article we present a general method for constructing cyclic proof systems with reset conditions from systems with global trace conditions. In contrast to previous approaches, this method of generation is entirely independent of logic's semantics, only relying on combinatorial aspects of the notion of ‘trace’ and ‘progress’. We apply this method to present reset proof systems for three cyclic proof systems from the literature: cyclic arithmetic, cyclic Gödel's T and cyclic tableaux for the modal <em>μ</em>-calculus.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0168007224000897/pdfft?md5=3f6516f2a534f0fa710275ea2d71b171&pid=1-s2.0-S0168007224000897-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007224000897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We consider cyclic proof systems in which derivations are graphs rather than trees. Such systems typically come with a condition that isolates which derivations are admitted as proofs, known as the soundness condition. This soundness condition frequently takes the form of either a global trace condition, a property dependent on all infinite paths in the proof-graph, or a reset condition, a ‘local’ condition depending on the simple cycles only which, as a result, is typically stable under more proof transformations.
In this article we present a general method for constructing cyclic proof systems with reset conditions from systems with global trace conditions. In contrast to previous approaches, this method of generation is entirely independent of logic's semantics, only relying on combinatorial aspects of the notion of ‘trace’ and ‘progress’. We apply this method to present reset proof systems for three cyclic proof systems from the literature: cyclic arithmetic, cyclic Gödel's T and cyclic tableaux for the modal μ-calculus.