Quantum simulation of discrete linear dynamical systems and simple iterative methods in linear algebra

Shi Jin, Nana Liu
{"title":"Quantum simulation of discrete linear dynamical systems and simple iterative methods in linear algebra","authors":"Shi Jin, Nana Liu","doi":"10.1098/rspa.2023.0370","DOIUrl":null,"url":null,"abstract":"Quantum simulation is capable of simulating certain dynamical systems in continuous time—Schrödinger’s equations being the most direct and well known—more efficiently than classical simulation. Any linear dynamical system can in fact be transformed into a system of Schrödinger’s equations via a method called Schrödingerisation (Jin et al. 2022. Quantum simulation of partial differential equations via Schrödingerisation. (https://arxiv.org/abs/2212.13969) and Jin et al. 2023. Phys. Rev. A 108, 032603. (doi:10.1103/PhysRevA.108.032603)). We show how Schrödingerisation allows quantum simulation to be directly used for the simulation of continuous-time versions of general (explicit) iterative schemes or discrete linear dynamical systems. In particular, we use this new method to solve linear systems of equations and for estimating the maximum eigenvector and eigenvalue of a matrix, respectively. This method is applicable using either discrete-variable quantum systems or on hybrid continuous-variable and discrete-variable quantum systems. This framework provides an interesting alternative to solve linear algebra problems using quantum simulation.","PeriodicalId":509915,"journal":{"name":"Proceedings of the Royal Society A","volume":"32 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum simulation is capable of simulating certain dynamical systems in continuous time—Schrödinger’s equations being the most direct and well known—more efficiently than classical simulation. Any linear dynamical system can in fact be transformed into a system of Schrödinger’s equations via a method called Schrödingerisation (Jin et al. 2022. Quantum simulation of partial differential equations via Schrödingerisation. (https://arxiv.org/abs/2212.13969) and Jin et al. 2023. Phys. Rev. A 108, 032603. (doi:10.1103/PhysRevA.108.032603)). We show how Schrödingerisation allows quantum simulation to be directly used for the simulation of continuous-time versions of general (explicit) iterative schemes or discrete linear dynamical systems. In particular, we use this new method to solve linear systems of equations and for estimating the maximum eigenvector and eigenvalue of a matrix, respectively. This method is applicable using either discrete-variable quantum systems or on hybrid continuous-variable and discrete-variable quantum systems. This framework provides an interesting alternative to solve linear algebra problems using quantum simulation.
离散线性动力系统的量子模拟和线性代数中的简单迭代法
与经典模拟相比,量子模拟能够更高效地模拟某些连续时间的动态系统--薛定谔方程是最直接、最著名的动态系统。事实上,任何线性动态系统都可以通过一种称为薛定谔化(Schrödingerisation)的方法转化为薛定谔方程系统(Jin 等,2022 年)。通过薛定谔化实现偏微分方程的量子模拟。(https://arxiv.org/abs/2212.13969)和 Jin 等人,2023。Phys. Rev. A 108, 032603.(doi:10.1103/PhysRevA.108.032603)).我们展示了薛定谔化如何让量子模拟直接用于一般(显式)迭代方案或离散线性动态系统的连续时间版本的模拟。特别是,我们使用这种新方法分别求解线性方程组和估计矩阵的最大特征向量和特征值。这种方法既适用于离散变量量子系统,也适用于连续变量和离散变量混合量子系统。这一框架为利用量子模拟解决线性代数问题提供了一种有趣的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信