Contribution to the determination of the effect of magnetic storms on the electric power transmission system

D. Mayer, Milan Stork
{"title":"Contribution to the determination of the effect of magnetic storms on the electric power transmission system","authors":"D. Mayer, Milan Stork","doi":"10.2478/jee-2024-0027","DOIUrl":null,"url":null,"abstract":"Abstract When a magnetic storm hits a power transmission system, quasi-stationary geomagnetically induced currents (GIC) are generated in the high-voltage part of the system. These currents cause semi-saturation of the magnetic circuits of power transformers, which induces current overload in their high-voltage windings and subsequently thermal overload, which can lead to system failures. This rather complex phenomenon was described in [11] by a system of nonlinear differential equations and subsequently solved. This very challenging method is replaced in the present work by a simple approach. It allows not only predicting the imminent danger of system collapse, but gives transformer designers valuable information on how they can counteract this danger.","PeriodicalId":508697,"journal":{"name":"Journal of Electrical Engineering","volume":"10 1","pages":"224 - 228"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jee-2024-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract When a magnetic storm hits a power transmission system, quasi-stationary geomagnetically induced currents (GIC) are generated in the high-voltage part of the system. These currents cause semi-saturation of the magnetic circuits of power transformers, which induces current overload in their high-voltage windings and subsequently thermal overload, which can lead to system failures. This rather complex phenomenon was described in [11] by a system of nonlinear differential equations and subsequently solved. This very challenging method is replaced in the present work by a simple approach. It allows not only predicting the imminent danger of system collapse, but gives transformer designers valuable information on how they can counteract this danger.
有助于确定磁暴对电力传输系统的影响
摘要 当磁暴袭击输电系统时,系统的高压部分会产生准静止地磁感应电流(GIC)。这些电流会导致电力变压器磁路半饱和,从而引起高压绕组电流过载,继而导致热过载,进而引发系统故障。文献 [11] 用非线性微分方程系统描述了这一相当复杂的现象,并随后进行了求解。本研究用一种简单的方法取代了这种极具挑战性的方法。它不仅能预测系统崩溃的紧迫危险,还能为变压器设计人员提供如何应对这一危险的宝贵信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信