A roadmap towards safe and sustainable by design nanotechnology: Implementation for nano-silver-based antimicrobial textile coatings production by ASINA project
Irini Furxhi , Massimo Perucca , Antti Joonas Koivisto , Rossella Bengalli , Paride Mantecca , Alessia Nicosia , David Burrueco-Subirà , Socorro Vázquez-Campos , Elma Lahive , Magda Blosi , Jesús Lopez de Ipiña , Juliana Oliveira , Marie Carriere , Claudia Vineis , Anna Costa
{"title":"A roadmap towards safe and sustainable by design nanotechnology: Implementation for nano-silver-based antimicrobial textile coatings production by ASINA project","authors":"Irini Furxhi , Massimo Perucca , Antti Joonas Koivisto , Rossella Bengalli , Paride Mantecca , Alessia Nicosia , David Burrueco-Subirà , Socorro Vázquez-Campos , Elma Lahive , Magda Blosi , Jesús Lopez de Ipiña , Juliana Oliveira , Marie Carriere , Claudia Vineis , Anna Costa","doi":"10.1016/j.csbj.2024.06.013","DOIUrl":null,"url":null,"abstract":"<div><p>This report demonstrates a case study within the ASINA project, aimed at instantiating a roadmap with quantitative metrics for Safe(r) and (more) Sustainable by Design (SSbD) options. We begin with a description of ASINA’s methodology across the product lifecycle, outlining the quantitative elements within: Physical-Chemical Features (PCFs), Key Decision Factors (KDFs), and Key Performance Indicators (KPIs). Subsequently, we delve in a proposed decision support tool for implementing the SSbD objectives across various dimensions—functionality, cost, environment, and human health safety—within a broader European context. We then provide an overview of the technical processes involved, including design rationales, experimental procedures, and tools/models developed within ASINA in delivering nano-silver-based antimicrobial textile coatings. The result is pragmatic, actionable metrics intended to be estimated and assessed in future SSbD applications and to be adopted in a common SSbD roadmap aligned with the EU’s Green Deal objectives. The methodological approach is transparently and thoroughly described to inform similar projects through the integration of KPIs into SSbD and foster data-driven decision-making. Specific results and project data are beyond this work’s scope, which is to demonstrate the ASINA roadmap and thus foster SSbD-oriented innovation in nanotechnology.</p></div>","PeriodicalId":10715,"journal":{"name":"Computational and structural biotechnology journal","volume":"25 ","pages":"Pages 127-142"},"PeriodicalIF":4.4000,"publicationDate":"2024-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2001037024002095/pdfft?md5=1ad8a920e251f7b99900a7930b1973c1&pid=1-s2.0-S2001037024002095-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and structural biotechnology journal","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2001037024002095","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This report demonstrates a case study within the ASINA project, aimed at instantiating a roadmap with quantitative metrics for Safe(r) and (more) Sustainable by Design (SSbD) options. We begin with a description of ASINA’s methodology across the product lifecycle, outlining the quantitative elements within: Physical-Chemical Features (PCFs), Key Decision Factors (KDFs), and Key Performance Indicators (KPIs). Subsequently, we delve in a proposed decision support tool for implementing the SSbD objectives across various dimensions—functionality, cost, environment, and human health safety—within a broader European context. We then provide an overview of the technical processes involved, including design rationales, experimental procedures, and tools/models developed within ASINA in delivering nano-silver-based antimicrobial textile coatings. The result is pragmatic, actionable metrics intended to be estimated and assessed in future SSbD applications and to be adopted in a common SSbD roadmap aligned with the EU’s Green Deal objectives. The methodological approach is transparently and thoroughly described to inform similar projects through the integration of KPIs into SSbD and foster data-driven decision-making. Specific results and project data are beyond this work’s scope, which is to demonstrate the ASINA roadmap and thus foster SSbD-oriented innovation in nanotechnology.
期刊介绍:
Computational and Structural Biotechnology Journal (CSBJ) is an online gold open access journal publishing research articles and reviews after full peer review. All articles are published, without barriers to access, immediately upon acceptance. The journal places a strong emphasis on functional and mechanistic understanding of how molecular components in a biological process work together through the application of computational methods. Structural data may provide such insights, but they are not a pre-requisite for publication in the journal. Specific areas of interest include, but are not limited to:
Structure and function of proteins, nucleic acids and other macromolecules
Structure and function of multi-component complexes
Protein folding, processing and degradation
Enzymology
Computational and structural studies of plant systems
Microbial Informatics
Genomics
Proteomics
Metabolomics
Algorithms and Hypothesis in Bioinformatics
Mathematical and Theoretical Biology
Computational Chemistry and Drug Discovery
Microscopy and Molecular Imaging
Nanotechnology
Systems and Synthetic Biology