{"title":"Importance of internal and external nutrient loading to the primary productivity of Lake Tanganyika","authors":"","doi":"10.1016/j.jglr.2024.102378","DOIUrl":null,"url":null,"abstract":"<div><p>A coupled hydrodynamic-ecosystem model (GOTM-FABM-ERGOM) was applied to test the hypothesis that primary production in the upper mixed layers of Lake Tanganyika is primarily controlled by internal nutrient inputs. The model was calibrated (data: May 2015–April 2016) and validated (data: May 2016–April 2017) against monthly field data of water temperature, dissolved oxygen, nutrients (nitrate, ammonium, phosphate) and chlorophyll <em>a</em> collected from Kigoma Bay in the northern part of the lake. Data of nutrients and discharge from the rivers (Ruzizi and Malagarasi) and atmospheric dry and wet deposition were derived from the literature. The model generally showed good agreement with the observed data for water temperature, dissolved oxygen and nutrients during the calibration and validation periods. The model satisfactorily reproduced the lake’s seasonal dynamics (dry and wet seasons) induced by the lake’s hydrodynamic processes. We found that both internal and external sources contribute importantly to total nutrient loading in the lake. Our results indicate that nutrient supply from rivers into Lake Tanganyika is more important than previously known. However, we call for further studies to investigate the contribution of other sources of regenerated nutrients (e.g. N<sub>2</sub>-fixation) to the overall primary productivity of Lake Tanganyika.</p></div>","PeriodicalId":54818,"journal":{"name":"Journal of Great Lakes Research","volume":"50 4","pages":"Article 102378"},"PeriodicalIF":2.4000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Great Lakes Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S038013302400128X","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A coupled hydrodynamic-ecosystem model (GOTM-FABM-ERGOM) was applied to test the hypothesis that primary production in the upper mixed layers of Lake Tanganyika is primarily controlled by internal nutrient inputs. The model was calibrated (data: May 2015–April 2016) and validated (data: May 2016–April 2017) against monthly field data of water temperature, dissolved oxygen, nutrients (nitrate, ammonium, phosphate) and chlorophyll a collected from Kigoma Bay in the northern part of the lake. Data of nutrients and discharge from the rivers (Ruzizi and Malagarasi) and atmospheric dry and wet deposition were derived from the literature. The model generally showed good agreement with the observed data for water temperature, dissolved oxygen and nutrients during the calibration and validation periods. The model satisfactorily reproduced the lake’s seasonal dynamics (dry and wet seasons) induced by the lake’s hydrodynamic processes. We found that both internal and external sources contribute importantly to total nutrient loading in the lake. Our results indicate that nutrient supply from rivers into Lake Tanganyika is more important than previously known. However, we call for further studies to investigate the contribution of other sources of regenerated nutrients (e.g. N2-fixation) to the overall primary productivity of Lake Tanganyika.
期刊介绍:
Published six times per year, the Journal of Great Lakes Research is multidisciplinary in its coverage, publishing manuscripts on a wide range of theoretical and applied topics in the natural science fields of biology, chemistry, physics, geology, as well as social sciences of the large lakes of the world and their watersheds. Large lakes generally are considered as those lakes which have a mean surface area of >500 km2 (see Herdendorf, C.E. 1982. Large lakes of the world. J. Great Lakes Res. 8:379-412, for examples), although smaller lakes may be considered, especially if they are very deep. We also welcome contributions on saline lakes and research on estuarine waters where the results have application to large lakes.