Dynamics analysis of an influenza epidemic model with virus mutation incorporating log-normal Ornstein–Uhlenbeck process

Xinhong Zhang, Xiaoshan Zhang, Daqing Jiang
{"title":"Dynamics analysis of an influenza epidemic model with virus mutation incorporating log-normal Ornstein–Uhlenbeck process","authors":"Xinhong Zhang, Xiaoshan Zhang, Daqing Jiang","doi":"10.1063/5.0179818","DOIUrl":null,"url":null,"abstract":"A stochastic influenza epidemic model where influenza virus can mutate into a mutant influenza virus is established to study the influence of environmental disturbance. And the transmission rate of the model is assumed to satisfy log-normal Ornstein–Uhlenbeck process. We verify that there exists a unique global positive solution to the stochastic model. By constructing proper Lyapunov functions, sufficient conditions under which the stationary distribution exists are obtained. In addition, we discuss the extinction of the disease. Furthermore, we get the accurate expression of probability density function near the endemic equilibrium of the stochastic model. Finally, several numerical simulations are carried out to verify theoretical results and examine the influence of environmental noise.","PeriodicalId":508452,"journal":{"name":"Journal of Mathematical Physics","volume":"12 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0179818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A stochastic influenza epidemic model where influenza virus can mutate into a mutant influenza virus is established to study the influence of environmental disturbance. And the transmission rate of the model is assumed to satisfy log-normal Ornstein–Uhlenbeck process. We verify that there exists a unique global positive solution to the stochastic model. By constructing proper Lyapunov functions, sufficient conditions under which the stationary distribution exists are obtained. In addition, we discuss the extinction of the disease. Furthermore, we get the accurate expression of probability density function near the endemic equilibrium of the stochastic model. Finally, several numerical simulations are carried out to verify theoretical results and examine the influence of environmental noise.
包含对数正态 Ornstein-Uhlenbeck 过程的病毒变异流感流行模型的动力学分析
为研究环境干扰的影响,建立了一个流感病毒可变异为突变型流感病毒的随机流感流行模型。并假设模型的传播率满足对数正态 Ornstein-Uhlenbeck 过程。我们验证了该随机模型存在唯一的全局正解。通过构建适当的 Lyapunov 函数,我们得到了静态分布存在的充分条件。此外,我们还讨论了疾病的消亡问题。此外,我们还得到了随机模型流行平衡附近概率密度函数的精确表达。最后,我们进行了多次数值模拟,以验证理论结果并研究环境噪声的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信