AI Assisted and IOT Based Fertilizer Mixing System

Wan Mohd Faizal, Wan Nik, Shahrul Fazly, Muhammad Imran Ahmad, Shafie Omar, Tan Shie Chow, Mohd Nazri, Abu Bakar, Fadhilnor Abdullah, Muhammad Khamil Akbar
{"title":"AI Assisted and IOT Based Fertilizer Mixing System","authors":"Wan Mohd Faizal, Wan Nik, Shahrul Fazly, Muhammad Imran Ahmad, Shafie Omar, Tan Shie Chow, Mohd Nazri, Abu Bakar, Fadhilnor Abdullah, Muhammad Khamil Akbar","doi":"10.58915/aset.v3i1.787","DOIUrl":null,"url":null,"abstract":"Agriculture techniques, particularly fertilizer mixing, have significant impacts on crop productivity. Introducing IoT technology to agriculture can enhance productivity, and machine learning offers a mechanism to gain insights from data, making agricultural practices more efficient. This research aims to design an AI-assisted and IoT-based fertilizer mixing system for greenhouses. This system utilizes sensor data and AI algorithms, specifically the Support Vector Machine (SVM), to optimize fertilizer application. Results from the SVM classifier showed a 100% accuracy rate for temperature and humidity, 65% accuracy for phosphorus, 86% for nitrogen, and 100% for potassium. These findings demonstrate the potential of the proposed system to improve fertilizer efficiency while reducing labor and resource waste.","PeriodicalId":282600,"journal":{"name":"Advanced and Sustainable Technologies (ASET)","volume":"68 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced and Sustainable Technologies (ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58915/aset.v3i1.787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Agriculture techniques, particularly fertilizer mixing, have significant impacts on crop productivity. Introducing IoT technology to agriculture can enhance productivity, and machine learning offers a mechanism to gain insights from data, making agricultural practices more efficient. This research aims to design an AI-assisted and IoT-based fertilizer mixing system for greenhouses. This system utilizes sensor data and AI algorithms, specifically the Support Vector Machine (SVM), to optimize fertilizer application. Results from the SVM classifier showed a 100% accuracy rate for temperature and humidity, 65% accuracy for phosphorus, 86% for nitrogen, and 100% for potassium. These findings demonstrate the potential of the proposed system to improve fertilizer efficiency while reducing labor and resource waste.
基于人工智能和物联网的肥料混合系统
农业技术,尤其是肥料混合技术,对作物生产率有重大影响。将物联网技术引入农业可以提高生产率,而机器学习则提供了一种从数据中获得洞察力的机制,从而提高农业实践的效率。本研究旨在为温室设计一个人工智能辅助和基于物联网的肥料混合系统。该系统利用传感器数据和人工智能算法(特别是支持向量机(SVM))来优化肥料施用。SVM 分类器的结果显示,温度和湿度的准确率为 100%,磷的准确率为 65%,氮的准确率为 86%,钾的准确率为 100%。这些研究结果表明,建议的系统具有提高肥料效率的潜力,同时还能减少劳动力和资源浪费。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信