{"title":"Single-Source VLCP System Based on Solar Cell Array Receiver and Right-Angled Tetrahedron Trilateration VLP (RATT-VLP) Algorithm","authors":"Dawei Xie, Zhongxu Liu, Changyuan Yu","doi":"10.3390/photonics11060536","DOIUrl":null,"url":null,"abstract":"A significant deployment limitation for visible light communication and positioning (VLCP) systems in energy- and light-source-restricted scenarios is the reliance of photodetectors (PDs) on external power supplies, compromising sustainability and complicating receiver charging. Solar cells (SCs), capable of harvesting and converting environmental light into electrical energy, offer a promising alternative. Consequently, we first propose an indoor VLCP system that utilizes an SC array as the receiver, alongside a right-angled tetrahedron trilateration visible light positioning (RATT-VLP) algorithm based on a single light source and multiple receivers. The proposed system uses an SC array in place of PDs, utilizing binary phase shift keying (BPSK) signals for simultaneous communication and positioning. In experiments, we verified the system’s error-free communication rate of 1.21 kbps and average positioning error of 3.40 cm in a 30 cm × 30 cm area, indicating that the system can simultaneously satisfy low-speed communication and accurate positioning applications. This provides a viable foundation for further research on SC-based VLCP systems, facilitating potential applications in environments like underwater wireless communication, positioning, and storage tank inspection.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11060536","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A significant deployment limitation for visible light communication and positioning (VLCP) systems in energy- and light-source-restricted scenarios is the reliance of photodetectors (PDs) on external power supplies, compromising sustainability and complicating receiver charging. Solar cells (SCs), capable of harvesting and converting environmental light into electrical energy, offer a promising alternative. Consequently, we first propose an indoor VLCP system that utilizes an SC array as the receiver, alongside a right-angled tetrahedron trilateration visible light positioning (RATT-VLP) algorithm based on a single light source and multiple receivers. The proposed system uses an SC array in place of PDs, utilizing binary phase shift keying (BPSK) signals for simultaneous communication and positioning. In experiments, we verified the system’s error-free communication rate of 1.21 kbps and average positioning error of 3.40 cm in a 30 cm × 30 cm area, indicating that the system can simultaneously satisfy low-speed communication and accurate positioning applications. This provides a viable foundation for further research on SC-based VLCP systems, facilitating potential applications in environments like underwater wireless communication, positioning, and storage tank inspection.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.