Junxia Yuan, Xiaofei Li, Feifan Wu, Cheng Pan, Haitao Yang
{"title":"Structure and oxygen evolution reaction performance of Ni-supported catalysts based on steam-exploded poplar","authors":"Junxia Yuan, Xiaofei Li, Feifan Wu, Cheng Pan, Haitao Yang","doi":"10.15376/biores.19.3.4886-4898","DOIUrl":null,"url":null,"abstract":"Using renewable steam-exploded poplar (SEP) as carbon source, nickel metal doped carbon hybrid materials were designed to synthesize catalysts (Ni/SEP) with certain oxygen evolution reaction (OER) properties and were compared with nickel catalysts supported on metal organic framework structure (ZIF67-Ni). The roles of SEP support in Ni-based catalyst were considered. Scanning electron microscope (SEM) images confirmed that the fiber could better hinder the aggregation of metal particles. Fourier transform infrared spectroscopy (FT-IR) indicated the presence of surface OH groups after the reduction process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses confirmed the major form of metallic Ni in the resulting Ni catalysts. Carbon materials as carriers, the synergetic effect of Ni-doped, and carbon carrier played an important role in facilitating the kinetics of OER, which was similar to the carrier of metal-organic frame material. Notably, the Ni/SEP (11.3 mF/cm-2) and ZIF67-Ni (37.2 mF/cm-2) with better OER performance exhibited a smaller double layer capacitances (Cdl), suggesting the intrinsic OER catalytic activity of the Ni/SEP and ZIF67-Ni were much higher in comparison to the ZIF67-Ni/SEP. Moreover, the inferior performance of Ni/SEP further indicated that the synergistic effect between carbon and Ni/NiO contributes to the enhanced OER activity.","PeriodicalId":503414,"journal":{"name":"BioResources","volume":"112 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioResources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15376/biores.19.3.4886-4898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Using renewable steam-exploded poplar (SEP) as carbon source, nickel metal doped carbon hybrid materials were designed to synthesize catalysts (Ni/SEP) with certain oxygen evolution reaction (OER) properties and were compared with nickel catalysts supported on metal organic framework structure (ZIF67-Ni). The roles of SEP support in Ni-based catalyst were considered. Scanning electron microscope (SEM) images confirmed that the fiber could better hinder the aggregation of metal particles. Fourier transform infrared spectroscopy (FT-IR) indicated the presence of surface OH groups after the reduction process. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analyses confirmed the major form of metallic Ni in the resulting Ni catalysts. Carbon materials as carriers, the synergetic effect of Ni-doped, and carbon carrier played an important role in facilitating the kinetics of OER, which was similar to the carrier of metal-organic frame material. Notably, the Ni/SEP (11.3 mF/cm-2) and ZIF67-Ni (37.2 mF/cm-2) with better OER performance exhibited a smaller double layer capacitances (Cdl), suggesting the intrinsic OER catalytic activity of the Ni/SEP and ZIF67-Ni were much higher in comparison to the ZIF67-Ni/SEP. Moreover, the inferior performance of Ni/SEP further indicated that the synergistic effect between carbon and Ni/NiO contributes to the enhanced OER activity.