Interfacial regulation engineering in anode-free rechargeable batteries

Zhendong Hao, Liang Yan, Wenjie Li, Yuhan Zeng, Yuming Dai, Yuan Cong, Jia Ju, Baosen Zhang
{"title":"Interfacial regulation engineering in anode-free rechargeable batteries","authors":"Zhendong Hao,&nbsp;Liang Yan,&nbsp;Wenjie Li,&nbsp;Yuhan Zeng,&nbsp;Yuming Dai,&nbsp;Yuan Cong,&nbsp;Jia Ju,&nbsp;Baosen Zhang","doi":"10.1002/cnl2.144","DOIUrl":null,"url":null,"abstract":"<p>Anode-free rechargeable batteries (AFRBs), equipped with bare collectors at the anode, are potential electrochemical energy storage technology attributed to their simplified cell configuration, high energy density, and cost reduction. Nevertheless, issues including insufficient Coulombic efficiency as well as the formation of the dendrites restrict their practical implementation. In recent years, various strategies have been proposed to overcome the critical issues of AFRBs. Among which, interfacial properties play key roles for achieving high stable AFRBs. In this review, an overview of AFRBs is discussed in the first part. Then, the main strategies based on interfacial regulation engineering toward high-performance AFRBs are summarized including designing of current collectors, introducing of surface coating layers, modification of electrolytes, separators engineering, cathode materials regulation, and so forth. In addition, some future perspectives for developing AFRBs are proposed. This review will create new avenues on constructing stable AFRBs for advanced energy storage devices.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"3 4","pages":"629-646"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.144","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Neutralization","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnl2.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anode-free rechargeable batteries (AFRBs), equipped with bare collectors at the anode, are potential electrochemical energy storage technology attributed to their simplified cell configuration, high energy density, and cost reduction. Nevertheless, issues including insufficient Coulombic efficiency as well as the formation of the dendrites restrict their practical implementation. In recent years, various strategies have been proposed to overcome the critical issues of AFRBs. Among which, interfacial properties play key roles for achieving high stable AFRBs. In this review, an overview of AFRBs is discussed in the first part. Then, the main strategies based on interfacial regulation engineering toward high-performance AFRBs are summarized including designing of current collectors, introducing of surface coating layers, modification of electrolytes, separators engineering, cathode materials regulation, and so forth. In addition, some future perspectives for developing AFRBs are proposed. This review will create new avenues on constructing stable AFRBs for advanced energy storage devices.

Abstract Image

无阳极充电电池中的界面调节工程
无阳极可充电电池(AFRBs)在阳极上装有裸集电极,由于其简化的电池结构、高能量密度和低成本,是一种潜在的电化学储能技术。然而,库仑效率不足以及树枝状集电体的形成等问题限制了其实际应用。近年来,人们提出了各种策略来克服 AFRBs 的关键问题。其中,界面特性对实现高稳定性的 AFRB 起着关键作用。在本综述中,第一部分讨论了 AFRBs 的概述。然后,总结了基于界面调节工程的高性能 AFRBs 的主要策略,包括集流器设计、表面涂层引入、电解质改性、分离器工程、阴极材料调节等。此外,还提出了一些开发 AFRB 的未来展望。本综述将为先进储能设备构建稳定的 AFRBs 开辟新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信