Real-Time Classification Model of Public Emergencies Using Fusion Expansion Network

Haiou Xiong, Gang Wang
{"title":"Real-Time Classification Model of Public Emergencies Using Fusion Expansion Network","authors":"Haiou Xiong, Gang Wang","doi":"10.4018/joeuc.345245","DOIUrl":null,"url":null,"abstract":"In today's deep learning-dominated era, real-time classification of public emergencies is a critical research area. Existing methods, however, often fall short in considering both temporal and spatial aspects comprehensively. This study introduces GEDNAS, a novel model that combines atrous convolutional neural network (DCNN), gated recurrent unit (GRU), and neural structure search (NAS) to address these limitations. GEDNAS utilizes DCNN to capture local spatio-temporal features, integrates GRU for time series modeling, and employs NAS for overall structural optimization. The approach significantly enhances real-time public emergency classification performance, showcasing its efficiency and accuracy in responding to real-time scenarios and providing robust support for emergency response efforts. This research introduces an innovative solution for public safety, advancing the application of deep learning in emergency management and inspiring the design of real-time classification models, ultimately enhancing overall societal safety.","PeriodicalId":504311,"journal":{"name":"Journal of Organizational and End User Computing","volume":"88 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organizational and End User Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/joeuc.345245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In today's deep learning-dominated era, real-time classification of public emergencies is a critical research area. Existing methods, however, often fall short in considering both temporal and spatial aspects comprehensively. This study introduces GEDNAS, a novel model that combines atrous convolutional neural network (DCNN), gated recurrent unit (GRU), and neural structure search (NAS) to address these limitations. GEDNAS utilizes DCNN to capture local spatio-temporal features, integrates GRU for time series modeling, and employs NAS for overall structural optimization. The approach significantly enhances real-time public emergency classification performance, showcasing its efficiency and accuracy in responding to real-time scenarios and providing robust support for emergency response efforts. This research introduces an innovative solution for public safety, advancing the application of deep learning in emergency management and inspiring the design of real-time classification models, ultimately enhancing overall societal safety.
利用融合扩展网络的突发公共事件实时分类模型
在当今以深度学习为主导的时代,突发公共事件的实时分类是一个重要的研究领域。然而,现有的方法往往不能全面考虑时间和空间方面。本研究介绍的 GEDNAS 是一种结合了无序卷积神经网络(DCNN)、门控递归单元(GRU)和神经结构搜索(NAS)的新型模型,旨在解决这些局限性。GEDNAS 利用 DCNN 捕捉局部时空特征,整合 GRU 进行时间序列建模,并利用 NAS 进行整体结构优化。该方法大大提高了实时公共应急分类性能,展示了其在应对实时场景时的效率和准确性,并为应急响应工作提供了有力支持。这项研究为公共安全引入了一种创新解决方案,推动了深度学习在应急管理中的应用,启发了实时分类模型的设计,最终提升了整体社会安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信