Command Filter-Based Adaptive Neural Control for Nonstrict-Feedback Nonlinear Systems with Prescribed Performance

IF 3.6 2区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xiaoli Yang, Jing Li, S. Ge, Xiaoling Liang, Tao Han
{"title":"Command Filter-Based Adaptive Neural Control for Nonstrict-Feedback Nonlinear Systems with Prescribed Performance","authors":"Xiaoli Yang, Jing Li, S. Ge, Xiaoling Liang, Tao Han","doi":"10.3390/fractalfract8060339","DOIUrl":null,"url":null,"abstract":"In this paper, a new command filter-based adaptive NN control strategy is developed to address the prescribed tracking performance issue for a class of nonstrict-feedback nonlinear systems. Compared with the existing performance functions, a new performance function, the fixed-time performance function, which does not depend on the accurate initial value of the error signal and has the ability of fixed-time convergence, is proposed for the first time. A radial basis function neural network is introduced to identify unknown nonlinear functions, and the characteristic of Gaussian basis functions is utilized to overcome the difficulties of the nonstrict-feedback structure. Moreover, in contrast to the traditional Backstepping technique, a command filter-based adaptive control algorithm is constructed, which solves the “explosion of complexity” problem and relaxes the assumption on the reference signal. Additionally, it is guaranteed that the tracking error falls within a prescribed small neighborhood by the designed performance functions in fixed time, and the closed-loop system is semi-globally uniformly ultimately bounded (SGUUB). The effectiveness of the proposed control scheme is verified by numerical simulation.","PeriodicalId":12435,"journal":{"name":"Fractal and Fractional","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractal and Fractional","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3390/fractalfract8060339","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a new command filter-based adaptive NN control strategy is developed to address the prescribed tracking performance issue for a class of nonstrict-feedback nonlinear systems. Compared with the existing performance functions, a new performance function, the fixed-time performance function, which does not depend on the accurate initial value of the error signal and has the ability of fixed-time convergence, is proposed for the first time. A radial basis function neural network is introduced to identify unknown nonlinear functions, and the characteristic of Gaussian basis functions is utilized to overcome the difficulties of the nonstrict-feedback structure. Moreover, in contrast to the traditional Backstepping technique, a command filter-based adaptive control algorithm is constructed, which solves the “explosion of complexity” problem and relaxes the assumption on the reference signal. Additionally, it is guaranteed that the tracking error falls within a prescribed small neighborhood by the designed performance functions in fixed time, and the closed-loop system is semi-globally uniformly ultimately bounded (SGUUB). The effectiveness of the proposed control scheme is verified by numerical simulation.
基于指令滤波器的自适应神经控制,用于具有规定性能的非严格反馈非线性系统
本文针对一类非严格反馈非线性系统的规定跟踪性能问题,提出了一种新的基于指令滤波器的自适应 NN 控制策略。与现有的性能函数相比,首次提出了一种新的性能函数--固定时间性能函数,它不依赖于误差信号的精确初始值,并具有固定时间收敛能力。引入径向基函数神经网络来识别未知非线性函数,并利用高斯基函数的特性克服了非严格反馈结构的困难。此外,与传统的 Backstepping 技术相比,构建了一种基于指令滤波器的自适应控制算法,解决了 "复杂性爆炸 "问题,并放宽了对参考信号的假设。此外,在固定时间内,通过设计的性能函数保证跟踪误差落在规定的小邻域内,并且闭环系统是半全局均匀终极有界的(SGUUB)。通过数值模拟验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fractal and Fractional
Fractal and Fractional MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.60
自引率
18.50%
发文量
632
审稿时长
11 weeks
期刊介绍: Fractal and Fractional is an international, scientific, peer-reviewed, open access journal that focuses on the study of fractals and fractional calculus, as well as their applications across various fields of science and engineering. It is published monthly online by MDPI and offers a cutting-edge platform for research papers, reviews, and short notes in this specialized area. The journal, identified by ISSN 2504-3110, encourages scientists to submit their experimental and theoretical findings in great detail, with no limits on the length of manuscripts to ensure reproducibility. A key objective is to facilitate the publication of detailed research, including experimental procedures and calculations. "Fractal and Fractional" also stands out for its unique offerings: it warmly welcomes manuscripts related to research proposals and innovative ideas, and allows for the deposition of electronic files containing detailed calculations and experimental protocols as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信