Antistatic textiles: current status and future outlook

Shireen Sh, Abo-Basha, Khaled M. Nassar, Rasha A. Mohamed
{"title":"Antistatic textiles: current status and future outlook","authors":"Shireen Sh, Abo-Basha, Khaled M. Nassar, Rasha A. Mohamed","doi":"10.55554/2785-9649.1033","DOIUrl":null,"url":null,"abstract":"Electrostatic discharge (ESD) poses increasing threats across sensitive sectors as electronic components become more delicateandnewerESDchallenges emerge.ESDresultsfrom staticchargeaccumulation oninsulated surfacesthatdischarge suddenly when high electric fi elds cause dielectric breakdown of the air gap. Contact and separation of materials with different electron af fi nities cause charge transfer through the triboelectric effect, a primary ESD generator. Low humidity exacerbates ESD risks by preventing dissipation. ESD can permanently damage sensitive electronics like integrated circuits wherevoltage thresholdsmay beonly 100 V.Beyondelectronics,ESD also threatens fl ammable industriesbytriggering fi res and explosions, healthcare sectors through device interference, and aerospace systems by disrupting avionics. Antistatic apparel and protective equipment are critical for controlling ESD in sensitive environments. Ideal materials rapidly dissipate charges while limiting discharge energy. However, optimizing both rapid decay and reduced discharge sparks involves tradeoffs between conduction and insulation. Key factors in fl uencing antistatic performance include fi ber composition, grid spacing of conductive elements, fabric structure, and how conductive components are integrated. Traditional standardized tests like resistivity have limitations for modern nonhomogeneous fabrics and real-world conditions. Application-speci fi c evaluations are ideal. Translating technological innovations into expanded testing and implementation programs is essential for increasing global adoption. With coordinated efforts, these fabrics hold the potentialto mitigate escalatingESD risksamidst accelerating technologicalprogress.Thesystematic literaturereview in this research focuses onconstructions, technological elements,andtest methodsto consider whileconstructingantistatic textiles.","PeriodicalId":173696,"journal":{"name":"Journal of Art, Design and Music","volume":"50 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Art, Design and Music","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55554/2785-9649.1033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrostatic discharge (ESD) poses increasing threats across sensitive sectors as electronic components become more delicateandnewerESDchallenges emerge.ESDresultsfrom staticchargeaccumulation oninsulated surfacesthatdischarge suddenly when high electric fi elds cause dielectric breakdown of the air gap. Contact and separation of materials with different electron af fi nities cause charge transfer through the triboelectric effect, a primary ESD generator. Low humidity exacerbates ESD risks by preventing dissipation. ESD can permanently damage sensitive electronics like integrated circuits wherevoltage thresholdsmay beonly 100 V.Beyondelectronics,ESD also threatens fl ammable industriesbytriggering fi res and explosions, healthcare sectors through device interference, and aerospace systems by disrupting avionics. Antistatic apparel and protective equipment are critical for controlling ESD in sensitive environments. Ideal materials rapidly dissipate charges while limiting discharge energy. However, optimizing both rapid decay and reduced discharge sparks involves tradeoffs between conduction and insulation. Key factors in fl uencing antistatic performance include fi ber composition, grid spacing of conductive elements, fabric structure, and how conductive components are integrated. Traditional standardized tests like resistivity have limitations for modern nonhomogeneous fabrics and real-world conditions. Application-speci fi c evaluations are ideal. Translating technological innovations into expanded testing and implementation programs is essential for increasing global adoption. With coordinated efforts, these fabrics hold the potentialto mitigate escalatingESD risksamidst accelerating technologicalprogress.Thesystematic literaturereview in this research focuses onconstructions, technological elements,andtest methodsto consider whileconstructingantistatic textiles.
抗静电纺织品:现状与未来展望
静电放电(ESD)对敏感行业的威胁日益严重,因为电子元件变得越来越脆弱,而且出现了更多新的静电放电挑战。静电放电是绝缘表面上静电荷积累的结果,当高电场导致气隙介电击穿时,静电荷会突然放电。具有不同电子能力的材料之间的接触和分离会通过三电效应(一种主要的静电放电发生器)导致电荷转移。低湿度会阻碍静电消散,从而加剧静电放电风险。除了电子产品之外,ESD 还会引发火灾和爆炸,威胁到可燃工业;通过设备干扰,威胁到医疗保健行业;通过破坏航空电子设备,威胁到航空航天系统。防静电服装和防护设备对于控制敏感环境中的静电放电至关重要。理想的材料可以快速消散电荷,同时限制放电能量。然而,要优化快速衰减和减少放电火花,需要在传导和绝缘之间做出权衡。影响抗静电性能的关键因素包括材料成分、导电元件的网格间距、织物结构以及导电元件的集成方式。传统的标准化测试(如电阻率)对于现代非均质织物和实际条件具有局限性。针对具体应用的评估是理想的选择。将技术创新转化为更广泛的测试和实施计划对于提高全球采用率至关重要。在协调努力下,这些织物有可能在加速技术进步的同时降低不断升级的ESD 风险。本研究中的系统性文献综述侧重于在构建抗静电织物时需要考虑的结构、技术要素和测试方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信