Exact minimal effective amounts of three 1D continuous functions and their use in Anderson transitions

Longyan Gong
{"title":"Exact minimal effective amounts of three 1D continuous functions and their use in Anderson transitions","authors":"Longyan Gong","doi":"10.1088/1751-8121/ad54a7","DOIUrl":null,"url":null,"abstract":"A conceptual quantity—the minimal effective amount of a quantum state ϕ(rj) in d-dimensional systems, defined by N∗=∑j=1Nmin{N|ϕ(rj)|2,1} , is newly proposed, where system sizes N=Ld . The effective dimension d IR can be calculated by N∗=h∗(L)LdIR , where h∗(L) does not change faster than any nonzero power. However, the nature of h∗(L) is unknown priori in any given model, but is at the same time very important for its numerical analysis. Hence, analytical results can provide insights on h∗(L) in more complex situations. In this paper, we get exact results of 1D continuous sine functions, exponential decay functions and power-law decay functions. They are used to distinguish extended and localized phases in the 1D uniform potential model, Anderson model and HMP (hopping rates modulated by a power-law function) model.","PeriodicalId":502730,"journal":{"name":"Journal of Physics A: Mathematical and Theoretical","volume":"19 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A: Mathematical and Theoretical","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad54a7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A conceptual quantity—the minimal effective amount of a quantum state ϕ(rj) in d-dimensional systems, defined by N∗=∑j=1Nmin{N|ϕ(rj)|2,1} , is newly proposed, where system sizes N=Ld . The effective dimension d IR can be calculated by N∗=h∗(L)LdIR , where h∗(L) does not change faster than any nonzero power. However, the nature of h∗(L) is unknown priori in any given model, but is at the same time very important for its numerical analysis. Hence, analytical results can provide insights on h∗(L) in more complex situations. In this paper, we get exact results of 1D continuous sine functions, exponential decay functions and power-law decay functions. They are used to distinguish extended and localized phases in the 1D uniform potential model, Anderson model and HMP (hopping rates modulated by a power-law function) model.
三个一维连续函数的精确最小有效量及其在安德森转换中的应用
新提出了一个概念量--d 维系统中量子态 j(rj) 的最小有效量,其定义为 N∗=∑j=1Nmin{N|j(rj)|2,1} ,其中系统大小 N=Ld 。有效维度 d IR 可以通过 N∗=h∗(L)LdIR 计算,其中 h∗(L) 的变化速度不会超过任何非零功率。然而,在任何给定模型中,h∗(L) 的性质都是先验未知的,但同时对其数值分析非常重要。因此,在更复杂的情况下,分析结果可以为 h∗(L)提供深入见解。在本文中,我们得到了一维连续正弦函数、指数衰减函数和幂律衰减函数的精确结果。它们被用来区分一维均匀势模型、安德森模型和 HMP(幂律函数调制的跳跃率)模型中的扩展相和局部相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信