Dorinda Folio, Arnaud Caudron, Laure Vigier, Sylvie Oddou-Muratorio, Jacques Labonne
{"title":"Using eco-evolutionary models to improve management of introgression in brown trout","authors":"Dorinda Folio, Arnaud Caudron, Laure Vigier, Sylvie Oddou-Muratorio, Jacques Labonne","doi":"10.1111/eff.12789","DOIUrl":null,"url":null,"abstract":"<p>The management of intraspecific diversity in many species is usually disconnected from eco-evolutionary processes happening <i>in natura</i>. A classic example is embodied in the problem of introgression in hybridized fish populations, wherein management practices are generally unaware of any selective process at work, and therefore generally rely on numbers (adding or removing individuals) to reduce introgression. Such an example can be observed in the French Alps, where native Mediterranea (MED) brown trout have been highly introgressed through decades of stocking with domesticated Atlantic (ATL) brown trout. Recently however, new results shed light on a potential selective mechanism that may affect differentially the fitness of MED and ATL genes depending on the environment (GxE interaction). Using a demogenetic agent-based model able to account for such GxE interaction, we simulate a management scenario implemented in 2005 by some biodiversity managers and scientists, who attempted to restore the Mediterranea gene pool using translocation of near pure MED individuals in Atlantic-dominated areas. We show that the model is unable to recreate the observed introgression dynamics if the GxE interaction is not included. This finding implies that (i) eco-evolutionary mechanisms can have large effects on introgression dynamics on very short time scales and (ii) management of intraspecific diversity should increasingly rely on these natural mechanisms, so as to improve management targets and facilitate adaptation to rapid environmental changes.</p>","PeriodicalId":11422,"journal":{"name":"Ecology of Freshwater Fish","volume":"33 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology of Freshwater Fish","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eff.12789","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
The management of intraspecific diversity in many species is usually disconnected from eco-evolutionary processes happening in natura. A classic example is embodied in the problem of introgression in hybridized fish populations, wherein management practices are generally unaware of any selective process at work, and therefore generally rely on numbers (adding or removing individuals) to reduce introgression. Such an example can be observed in the French Alps, where native Mediterranea (MED) brown trout have been highly introgressed through decades of stocking with domesticated Atlantic (ATL) brown trout. Recently however, new results shed light on a potential selective mechanism that may affect differentially the fitness of MED and ATL genes depending on the environment (GxE interaction). Using a demogenetic agent-based model able to account for such GxE interaction, we simulate a management scenario implemented in 2005 by some biodiversity managers and scientists, who attempted to restore the Mediterranea gene pool using translocation of near pure MED individuals in Atlantic-dominated areas. We show that the model is unable to recreate the observed introgression dynamics if the GxE interaction is not included. This finding implies that (i) eco-evolutionary mechanisms can have large effects on introgression dynamics on very short time scales and (ii) management of intraspecific diversity should increasingly rely on these natural mechanisms, so as to improve management targets and facilitate adaptation to rapid environmental changes.
期刊介绍:
Ecology of Freshwater Fish publishes original contributions on all aspects of fish ecology in freshwater environments, including lakes, reservoirs, rivers, and streams. Manuscripts involving ecologically-oriented studies of behavior, conservation, development, genetics, life history, physiology, and host-parasite interactions are welcomed. Studies involving population ecology and community ecology are also of interest, as are evolutionary approaches including studies of population biology, evolutionary ecology, behavioral ecology, and historical ecology. Papers addressing the life stages of anadromous and catadromous species in estuaries and inshore coastal zones are considered if they contribute to the general understanding of freshwater fish ecology. Theoretical and modeling studies are suitable if they generate testable hypotheses, as are those with implications for fisheries. Manuscripts presenting analyses of published data are considered if they produce novel conclusions or syntheses. The journal publishes articles, fresh perspectives, and reviews and, occasionally, the proceedings of conferences and symposia.