{"title":"Optimal Scanning Pattern for Initial Free-Space Optical-Link Alignment","authors":"P. Skryja, P. Barcik","doi":"10.3390/photonics11060540","DOIUrl":null,"url":null,"abstract":"Since free-space optical links (especially fully photonic ones) are very challenging to accurately align; scanning algorithms are used for the initial search and alignment of the transceivers. The initial alignment aims to intercept the optical beam so that it hits a position-sensitive detector. However, this operation can be very time-consuming (depending on the system parameters, such as transceiver parameters, distance between transceivers, divergence of the transmitter, angle of view of the receiver, etc.). A spiral scan is used as the most widespread pattern for scanning. This article examines the effects of system parameters (e.g., global navigation satellite systems and compass accuracy) on the angular area of uncertainty that must be scanned to find the optical beam. Furthermore, several types of spiral pattern are compared depending on the time of the scan execution and the required number of points for scanning the given uncertainty area. The cut hexagonal spiral scan achieved the best results as it required 18.1% less time than the common spiral scan for the presented transceiver.","PeriodicalId":20154,"journal":{"name":"Photonics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3390/photonics11060540","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Since free-space optical links (especially fully photonic ones) are very challenging to accurately align; scanning algorithms are used for the initial search and alignment of the transceivers. The initial alignment aims to intercept the optical beam so that it hits a position-sensitive detector. However, this operation can be very time-consuming (depending on the system parameters, such as transceiver parameters, distance between transceivers, divergence of the transmitter, angle of view of the receiver, etc.). A spiral scan is used as the most widespread pattern for scanning. This article examines the effects of system parameters (e.g., global navigation satellite systems and compass accuracy) on the angular area of uncertainty that must be scanned to find the optical beam. Furthermore, several types of spiral pattern are compared depending on the time of the scan execution and the required number of points for scanning the given uncertainty area. The cut hexagonal spiral scan achieved the best results as it required 18.1% less time than the common spiral scan for the presented transceiver.
期刊介绍:
Photonics (ISSN 2304-6732) aims at a fast turn around time for peer-reviewing manuscripts and producing accepted articles. The online-only and open access nature of the journal will allow for a speedy and wide circulation of your research as well as review articles. We aim at establishing Photonics as a leading venue for publishing high impact fundamental research but also applications of optics and photonics. The journal particularly welcomes both theoretical (simulation) and experimental research. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.