Enhancing Spectroscopic Experiment Calibration through Differentiable Programming

F. Napolitano
{"title":"Enhancing Spectroscopic Experiment Calibration through Differentiable Programming","authors":"F. Napolitano","doi":"10.3390/condmat9020026","DOIUrl":null,"url":null,"abstract":"In this work, we present an innovative calibration technique leveraging differentiable programming to enhance energy resolution and reduce the energy scale systematic uncertainty in X-ray spectroscopic experiments. This approach is demonstrated using synthetic data and is applicable in general to various spectroscopic measurements. This method extends the scope of differentiable programming for calibration, employing Kernel Density Estimation (KDE) to achieve a target Probability Density Function (PDF) for a fully differentiable model of the calibration. To assess the effectiveness of the calibration, we conduct a toy simulation replicating the entire detector response chain and compare it with a standard calibration. This ensures a robust and reliable calibration methodology, holding promise for improving energy resolution and providing a more versatile and efficient approach without the need for extensive fine-tuning.","PeriodicalId":505256,"journal":{"name":"Condensed Matter","volume":"41 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/condmat9020026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present an innovative calibration technique leveraging differentiable programming to enhance energy resolution and reduce the energy scale systematic uncertainty in X-ray spectroscopic experiments. This approach is demonstrated using synthetic data and is applicable in general to various spectroscopic measurements. This method extends the scope of differentiable programming for calibration, employing Kernel Density Estimation (KDE) to achieve a target Probability Density Function (PDF) for a fully differentiable model of the calibration. To assess the effectiveness of the calibration, we conduct a toy simulation replicating the entire detector response chain and compare it with a standard calibration. This ensures a robust and reliable calibration methodology, holding promise for improving energy resolution and providing a more versatile and efficient approach without the need for extensive fine-tuning.
通过可微分编程加强光谱实验校准
在这项工作中,我们提出了一种创新的校准技术,利用可微分编程来提高能量分辨率,减少 X 射线光谱实验中能量尺度的系统不确定性。我们使用合成数据演示了这种方法,它一般适用于各种光谱测量。该方法扩展了用于校准的可微分编程的范围,采用核密度估计(KDE)为校准的完全可微分模型实现目标概率密度函数(PDF)。为了评估校准的有效性,我们进行了一次玩具模拟,复制了整个探测器响应链,并与标准校准进行了比较。这确保了校准方法的稳健性和可靠性,有望提高能量分辨率,并提供一种更通用、更高效的方法,而无需进行大量微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信