{"title":"Robust Optimization Model of Airport Group Coordinated Timetable with Uncertain Flight Time","authors":"Jianzhong Yan, Minghua Hu","doi":"10.3390/aerospace11060457","DOIUrl":null,"url":null,"abstract":"This study develops a robust 0–1 linear optimization programming model for airport group timetable coordination, aiming at assigning each flight at an airport to a unique time slot to avoid conflicts between multiple flights from different airports at the same shared waypoint in an uncertain environment. Flight times between airports and shared waypoints are assumed to have an arbitrary distribution in the interval. Furthermore, some practical constraints, such as the time-varying capacity of each airport, waypoints affected by factors such as weather and traffic control, and maximum delay times for each flight, are considered in this study. The objective is to minimize the total delay time for all flights. The solution is obtained using the RSOME solver. Finally, a real-world case of the Beijing–Tianjin–Hebei airport group, China, is used to optimize the schedules of four airports to prove the accuracy and effectiveness of the method developed in this study. The influence of the budget of uncertainty parameters on model performance is also analyzed.","PeriodicalId":48525,"journal":{"name":"Aerospace","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11060457","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
This study develops a robust 0–1 linear optimization programming model for airport group timetable coordination, aiming at assigning each flight at an airport to a unique time slot to avoid conflicts between multiple flights from different airports at the same shared waypoint in an uncertain environment. Flight times between airports and shared waypoints are assumed to have an arbitrary distribution in the interval. Furthermore, some practical constraints, such as the time-varying capacity of each airport, waypoints affected by factors such as weather and traffic control, and maximum delay times for each flight, are considered in this study. The objective is to minimize the total delay time for all flights. The solution is obtained using the RSOME solver. Finally, a real-world case of the Beijing–Tianjin–Hebei airport group, China, is used to optimize the schedules of four airports to prove the accuracy and effectiveness of the method developed in this study. The influence of the budget of uncertainty parameters on model performance is also analyzed.
期刊介绍:
Aerospace is a multidisciplinary science inviting submissions on, but not limited to, the following subject areas: aerodynamics computational fluid dynamics fluid-structure interaction flight mechanics plasmas research instrumentation test facilities environment material science structural analysis thermophysics and heat transfer thermal-structure interaction aeroacoustics optics electromagnetism and radar propulsion power generation and conversion fuels and propellants combustion multidisciplinary design optimization software engineering data analysis signal and image processing artificial intelligence aerospace vehicles'' operation, control and maintenance risk and reliability human factors human-automation interaction airline operations and management air traffic management airport design meteorology space exploration multi-physics interaction.