AN APPROACH OF MEAN-SETS THEORY FOR NEGATIVELY CURVED CONVEX COMBINATION POLISH METRIC SPACES

Christophe Fotso, Duplex Elvis, Houpa Danga, Daniel Tieudjo
{"title":"AN APPROACH OF MEAN-SETS THEORY FOR NEGATIVELY CURVED CONVEX COMBINATION POLISH METRIC SPACES","authors":"Christophe Fotso, Duplex Elvis, Houpa Danga, Daniel Tieudjo","doi":"10.37418/amsj.13.2.3","DOIUrl":null,"url":null,"abstract":"The choice of a convenient approach to be used is one important issue when attempting to develop methods or obtain results in the setting of Probability on general metric spaces. In this paper, we extend the mean-sets probabilistic approach formally introduced by Mosina on locally finite graphs, and hence (via Cayley graphs) on finitely generated groups, to the field of Negatively Curved Convex Combination Polish (NCCCP) metric spaces. We construct an appropriated Vertex-Weighted Metric (VWM) graph in the framework of this class of geometrical structures. We define a function called convexification function on the direct product of $ n $ copies of the vertex-set of this graph (for a given fixed integer $ n\\geq 2$), using the natural convexification operator of the metric space concerned. This function is then used to construct a weighted mean-set that generalizes the notion of convex combination (CC) mean in the sense of Ter{\\'a}n and Molchanov, the mean-set concept according to Mosina and the ordinary notion of $ k $-means ($k\\geq 2$) of independent identically distributed (i.i.d.) random elements of the metric space. Two numerical examples are given for the cases when the metric space $ X= [0,1]$ and $ X=\\mathbf{R}^{2} $. Moreover, an analogue of the Strong Law of Large Numbers (SLLN), the consistency problem and the Chebyshev's inequality for NCCCP spaces are established.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"51 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.13.2.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The choice of a convenient approach to be used is one important issue when attempting to develop methods or obtain results in the setting of Probability on general metric spaces. In this paper, we extend the mean-sets probabilistic approach formally introduced by Mosina on locally finite graphs, and hence (via Cayley graphs) on finitely generated groups, to the field of Negatively Curved Convex Combination Polish (NCCCP) metric spaces. We construct an appropriated Vertex-Weighted Metric (VWM) graph in the framework of this class of geometrical structures. We define a function called convexification function on the direct product of $ n $ copies of the vertex-set of this graph (for a given fixed integer $ n\geq 2$), using the natural convexification operator of the metric space concerned. This function is then used to construct a weighted mean-set that generalizes the notion of convex combination (CC) mean in the sense of Ter{\'a}n and Molchanov, the mean-set concept according to Mosina and the ordinary notion of $ k $-means ($k\geq 2$) of independent identically distributed (i.i.d.) random elements of the metric space. Two numerical examples are given for the cases when the metric space $ X= [0,1]$ and $ X=\mathbf{R}^{2} $. Moreover, an analogue of the Strong Law of Large Numbers (SLLN), the consistency problem and the Chebyshev's inequality for NCCCP spaces are established.
负弯曲凸组合抛光度量空间的均值集理论方法
当试图在一般度量空间的概率论环境中开发方法或获得结果时,选择一种方便的方法是一个重要问题。在本文中,我们将莫西纳在局部有限图上正式引入的均值集概率方法,进而(通过卡莱图)在有限生成群上引入的均值集概率方法,扩展到负弯凸组合波兰(NCCCP)度量空间领域。我们在这一类几何结构的框架内构建了一个适当的顶点加权度量(VWM)图。我们使用相关度量空间的自然凸化算子,在该图顶点集(对于给定的固定整数 $ n\geq 2$)的 $ n $ 副本的直接乘积上定义了一个称为凸化函数的函数。然后利用这个函数来构造一个加权均值集,它概括了 Ter{\'a}n 和 Molchanov 意义上的凸组合(CC)均值概念、Mosina 的均值集概念以及度量空间中独立同分布(i.i.d. )随机元素的 $ k $ 均值($k\geq 2$)的普通概念。文中给出了度量空间 $ X= [0,1]$ 和 $ X=\mathbf{R}^{2} $ 时的两个数值示例。此外,还建立了 NCCCP 空间的强大数定律(SLLN)、一致性问题和切比雪夫不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信