A short-term wind power probability prediction method based on soft clustering and similarity measurement

Zhiwei Liu, Xin Liu, Lin Gong, Minxia Liu, Xi Xiang, Jian Xie, Yongyang Zhang
{"title":"A short-term wind power probability prediction method based on soft clustering and similarity measurement","authors":"Zhiwei Liu, Xin Liu, Lin Gong, Minxia Liu, Xi Xiang, Jian Xie, Yongyang Zhang","doi":"10.1117/12.3030457","DOIUrl":null,"url":null,"abstract":"With the rapid development of wind energy, probabilistic forecasting of wind power becomes increasingly crucial for reliable operations of power grids. This paper proposes a wind power interval prediction method based on temporal data soft clustering and similarity measurement (SCSM). First, a soft clustering module is used to cluster wind power data with probabilities. Next, a similarity measurement module assesses the similarity between wind power data based on soft clustering results and generates probability interval predictions by referring to historical prediction errors. Finally, the effectiveness of the proposed method is validated using real wind power data.","PeriodicalId":198425,"journal":{"name":"Other Conferences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3030457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the rapid development of wind energy, probabilistic forecasting of wind power becomes increasingly crucial for reliable operations of power grids. This paper proposes a wind power interval prediction method based on temporal data soft clustering and similarity measurement (SCSM). First, a soft clustering module is used to cluster wind power data with probabilities. Next, a similarity measurement module assesses the similarity between wind power data based on soft clustering results and generates probability interval predictions by referring to historical prediction errors. Finally, the effectiveness of the proposed method is validated using real wind power data.
基于软聚类和相似性测量的短期风力发电概率预测方法
随着风能的快速发展,风力发电的概率预测对电网的可靠运行越来越重要。本文提出了一种基于时间数据软聚类和相似性测量(SCSM)的风电间隔预测方法。首先,使用软聚类模块对风电数据进行概率聚类。然后,相似性测量模块根据软聚类结果评估风电数据之间的相似性,并参考历史预测误差生成概率区间预测。最后,利用真实风力发电数据验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信