CBAN: A DDoS detection method based on CNN, BiGRU, and attention mechanism

Bing Wang, Yankun Yu, Chunlan Zhao, Jing Jiang
{"title":"CBAN: A DDoS detection method based on CNN, BiGRU, and attention mechanism","authors":"Bing Wang, Yankun Yu, Chunlan Zhao, Jing Jiang","doi":"10.1117/12.3032053","DOIUrl":null,"url":null,"abstract":"In order to address the obstacles posed by the growing security issues of the Internet of Things to the development of big data, this paper conducts in-depth research on the defense of the most harmful DDoS attack. This paper designs a deep learning model for DDoS detection - CBAN. The CBAN model integrates technologies such as 1D-CNN, BiGRU, and attention mechanism for structural design. This model can effectively extract spatial and temporal features of network traffic data for efficient detection of potential DDoS attacks. The CBAN model has shown excellent performance on the CIC-DDoS-2019 dataset.","PeriodicalId":198425,"journal":{"name":"Other Conferences","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3032053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to address the obstacles posed by the growing security issues of the Internet of Things to the development of big data, this paper conducts in-depth research on the defense of the most harmful DDoS attack. This paper designs a deep learning model for DDoS detection - CBAN. The CBAN model integrates technologies such as 1D-CNN, BiGRU, and attention mechanism for structural design. This model can effectively extract spatial and temporal features of network traffic data for efficient detection of potential DDoS attacks. The CBAN model has shown excellent performance on the CIC-DDoS-2019 dataset.
CBAN:基于 CNN、BiGRU 和注意力机制的 DDoS 检测方法
针对物联网安全问题日益突出给大数据发展带来的障碍,本文对危害最大的DDoS攻击防御进行了深入研究。本文设计了一种用于 DDoS 检测的深度学习模型--CBAN。CBAN 模型在结构设计上集成了一维-CNN、BiGRU 和注意力机制等技术。该模型能有效提取网络流量数据的时空特征,从而高效检测潜在的 DDoS 攻击。CBAN 模型在 CIC-DDoS-2019 数据集上表现出色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信