Rapid quantitative detection of Ractopamine using Raman scattering features combining with deep learning

Tianzhen Yin, Yankun Peng, K. Chao, J. Qin, Feifei Tao, Yang Li, Zhenhao Ma
{"title":"Rapid quantitative detection of Ractopamine using Raman scattering features combining with deep learning","authors":"Tianzhen Yin, Yankun Peng, K. Chao, J. Qin, Feifei Tao, Yang Li, Zhenhao Ma","doi":"10.1117/12.3013271","DOIUrl":null,"url":null,"abstract":"Establishing a universal and efficient method for determining ractopamine residues in pork is of paramount importance for ensuring food safety. However, the main challenge lies in achieving accurate quantitative detection of complex samples using Surface-Enhanced Raman Scattering (SERS), as it requires overcoming interference from substrate-sample mixing and variations in hotspot distribution. This study introduces an innovative approach to address this challenge by proposing a breakthrough interference factor removal network based on deep learning, termed SERSNet. By enhancing the depth of SERS spectroscopy, SERSNet establishes a correlation between the spectra of pork samples with varying concentrations of ractopamine. A multilayer convolution module is developed to effectively extract the spectral features of ractopamine. The Mean Absolute Error (MAE), root mean square error (RMSE), and Mean Absolute Percentage Error (MAPE) of the proposed model in this paper are 0.90, 0.48, and 80.48, respectively. The performance of the SERSNet model surpasses that of the Multiple Linear Regression (MLR) model. The SERSNet algorithm proposed in this paper demonstrates competitiveness and yields superior results.","PeriodicalId":178341,"journal":{"name":"Defense + Commercial Sensing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defense + Commercial Sensing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3013271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Establishing a universal and efficient method for determining ractopamine residues in pork is of paramount importance for ensuring food safety. However, the main challenge lies in achieving accurate quantitative detection of complex samples using Surface-Enhanced Raman Scattering (SERS), as it requires overcoming interference from substrate-sample mixing and variations in hotspot distribution. This study introduces an innovative approach to address this challenge by proposing a breakthrough interference factor removal network based on deep learning, termed SERSNet. By enhancing the depth of SERS spectroscopy, SERSNet establishes a correlation between the spectra of pork samples with varying concentrations of ractopamine. A multilayer convolution module is developed to effectively extract the spectral features of ractopamine. The Mean Absolute Error (MAE), root mean square error (RMSE), and Mean Absolute Percentage Error (MAPE) of the proposed model in this paper are 0.90, 0.48, and 80.48, respectively. The performance of the SERSNet model surpasses that of the Multiple Linear Regression (MLR) model. The SERSNet algorithm proposed in this paper demonstrates competitiveness and yields superior results.
利用拉曼散射特征与深度学习相结合快速定量检测莱克多巴胺
建立一种测定猪肉中莱克多巴胺残留量的通用高效方法对于确保食品安全至关重要。然而,利用表面增强拉曼散射(SERS)实现复杂样品的精确定量检测是一项主要挑战,因为这需要克服基底-样品混合和热点分布变化的干扰。本研究通过提出一种基于深度学习的突破性干扰因素去除网络(称为 SERSNet),引入了一种创新方法来应对这一挑战。通过增强 SERS 光谱的深度,SERSNet 建立了不同莱克多巴胺浓度的猪肉样品光谱之间的相关性。开发的多层卷积模块可有效提取莱克多巴胺的光谱特征。本文提出的模型的平均绝对误差(MAE)、均方根误差(RMSE)和平均绝对百分比误差(MAPE)分别为 0.90、0.48 和 80.48。SERSNet 模型的性能超过了多元线性回归(MLR)模型。本文提出的 SERSNet 算法具有很强的竞争力,并取得了优异的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信