Uncertainty-Driven Data Aggregation for Imitation Learning in Autonomous Vehicles

Information Pub Date : 2024-06-06 DOI:10.3390/info15060336
Changquan Wang, Yun Wang
{"title":"Uncertainty-Driven Data Aggregation for Imitation Learning in Autonomous Vehicles","authors":"Changquan Wang, Yun Wang","doi":"10.3390/info15060336","DOIUrl":null,"url":null,"abstract":"Imitation learning has shown promise for autonomous driving, but suffers from covariate shift, where the policy performs poorly in unseen environments. DAgger is a popular approach that addresses this by leveraging expert demonstrations. However, DAgger’s frequent visits to sub-optimal states can lead to several challenges. This paper proposes a novel DAgger framework that integrates Bayesian uncertainty estimation via mean field variational inference (MFVI) to address this issue. MFVI provides better-calibrated uncertainty estimates compared to prior methods. During training, the framework identifies both uncertain and critical states, querying the expert only for these states. This targeted data collection reduces the burden on the expert and improves data efficiency. Evaluations on the CARLA simulator demonstrate that our approach outperforms existing methods, highlighting the effectiveness of Bayesian uncertainty estimation and targeted data aggregation for imitation learning in autonomous driving.","PeriodicalId":510156,"journal":{"name":"Information","volume":"28 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info15060336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Imitation learning has shown promise for autonomous driving, but suffers from covariate shift, where the policy performs poorly in unseen environments. DAgger is a popular approach that addresses this by leveraging expert demonstrations. However, DAgger’s frequent visits to sub-optimal states can lead to several challenges. This paper proposes a novel DAgger framework that integrates Bayesian uncertainty estimation via mean field variational inference (MFVI) to address this issue. MFVI provides better-calibrated uncertainty estimates compared to prior methods. During training, the framework identifies both uncertain and critical states, querying the expert only for these states. This targeted data collection reduces the burden on the expert and improves data efficiency. Evaluations on the CARLA simulator demonstrate that our approach outperforms existing methods, highlighting the effectiveness of Bayesian uncertainty estimation and targeted data aggregation for imitation learning in autonomous driving.
不确定性驱动的数据聚合用于自动驾驶汽车的模仿学习
模仿学习在自动驾驶领域大有可为,但也存在协变量偏移的问题,即政策在未知环境中表现不佳。DAgger 是一种流行的方法,它通过利用专家示范来解决这一问题。然而,DAgger 频繁访问次优状态会带来一些挑战。本文提出了一种新颖的 DAgger 框架,该框架通过均值场变分推理(MFVI)集成了贝叶斯不确定性估计,以解决这一问题。与之前的方法相比,MFVI 提供了更好的校准不确定性估计。在训练过程中,该框架会识别不确定状态和临界状态,仅针对这些状态查询专家。这种有针对性的数据收集方法减轻了专家的负担,提高了数据效率。在 CARLA 模拟器上进行的评估表明,我们的方法优于现有方法,凸显了贝叶斯不确定性估计和有针对性的数据收集在自动驾驶模仿学习中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信