Privacy federation learning framework based on principal component analysis

Jiaheng Yang, Xia Feng, Yueming Liu
{"title":"Privacy federation learning framework based on principal component analysis","authors":"Jiaheng Yang, Xia Feng, Yueming Liu","doi":"10.1117/12.3031919","DOIUrl":null,"url":null,"abstract":"Federal learning is an effective distributed learning technology that allows machine learning model training while protecting data privacy. However, with the increase of the number of user -side devices, the calculation burden of users in federal learning will increase. Researchers explore the use of dimension reduction technology to reduce the calculation burden required for model training, but this triggers a problem with low accuracy. This article extracts the dimensions of gradient data by improving the main component analysis method to extract the dimensions of gradient data and reduce communication and calculation burden while protecting the privacy of the client. The experimental results of this article show that under large -scale data sets, the method of this article increases the speed of 50%training and reaches 96% accuracy.","PeriodicalId":198425,"journal":{"name":"Other Conferences","volume":"3 10","pages":"131750E - 131750E-9"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Other Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3031919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Federal learning is an effective distributed learning technology that allows machine learning model training while protecting data privacy. However, with the increase of the number of user -side devices, the calculation burden of users in federal learning will increase. Researchers explore the use of dimension reduction technology to reduce the calculation burden required for model training, but this triggers a problem with low accuracy. This article extracts the dimensions of gradient data by improving the main component analysis method to extract the dimensions of gradient data and reduce communication and calculation burden while protecting the privacy of the client. The experimental results of this article show that under large -scale data sets, the method of this article increases the speed of 50%training and reaches 96% accuracy.
基于主成分分析的隐私联盟学习框架
联邦学习是一种有效的分布式学习技术,可以在保护数据隐私的同时进行机器学习模型训练。然而,随着用户端设备数量的增加,用户在联邦学习中的计算负担也会增加。研究人员探索使用降维技术来减少模型训练所需的计算负担,但这引发了准确率低的问题。本文通过改进主成分分析方法,提取梯度数据的维度,在保护客户端隐私的同时,减少通信和计算负担。本文的实验结果表明,在大规模数据集下,本文的方法提高了50%的训练速度,准确率达到96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信